Suppr超能文献

利用铰链区紧密氢键网络将肌红蛋白转化为稳定的结构域交换二聚体的实验与理论研究

Experimental and theoretical study on converting myoglobin into a stable domain-swapped dimer by utilizing a tight hydrogen bond network at the hinge region.

作者信息

Xie Cheng, Shimoyama Hiromitsu, Yamanaka Masaru, Nagao Satoshi, Komori Hirofumi, Shibata Naoki, Higuchi Yoshiki, Shigeta Yasuteru, Hirota Shun

机构信息

Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama, Ikoma Nara 630-0192 Japan

Division of Life Science, Center for Computational Sciences, University of Tsukuba 1-1-1, Tennodai Ibaraki 305-8577 Japan

出版信息

RSC Adv. 2021 Nov 23;11(59):37604-37611. doi: 10.1039/d1ra06888a. eCollection 2021 Nov 17.

Abstract

Various factors, such as helical propensity and hydrogen bonds, control protein structures. A frequently used model protein, myoglobin (Mb), can perform 3D domain swapping, in which the loop at the hinge region is converted to a helical structure in the dimer. We have previously succeeded in obtaining monomer-dimer equilibrium in the native state by introducing a high α-helical propensity residue, Ala, to the hinge region. In this study, we focused on another factor that governs the protein structure, hydrogen bonding. X-ray crystal structures and thermodynamic studies showed that the myoglobin dimer was stabilized over the monomer when keeping His82 to interact with Lys79 and Asp141 through water moleclues and mutating Leu137, which was located close to the H-bond network at the dimer hinge region, to a hydrophilic amino acid (Glu or Asp). Molecular dynamics simulation studies confirmed that the number of H-bonds increased and the α-helices at the hinge region became more rigid for mutants with a tighter H-bond network, supporting the hypothesis that the myoglobin dimer is stabilized when the H-bond network at the hinge region is enhanced. This demonstrates the importance and utility of hydrogen bonds for designing a protein dimer from its monomer with 3D domain swapping.

摘要

多种因素,如螺旋倾向和氢键,控制着蛋白质结构。一种常用的模型蛋白——肌红蛋白(Mb),能够进行三维结构域交换,其中铰链区的环在二聚体中转变为螺旋结构。我们之前通过在铰链区引入高α-螺旋倾向的残基丙氨酸(Ala),成功地在天然状态下实现了单体-二聚体平衡。在本研究中,我们关注另一个控制蛋白质结构的因素——氢键。X射线晶体结构和热力学研究表明,当保持His82通过水分子与Lys79和Asp141相互作用,并将位于二聚体铰链区氢键网络附近的Leu137突变为亲水性氨基酸(Glu或Asp)时,肌红蛋白二聚体比单体更稳定。分子动力学模拟研究证实,对于具有更紧密氢键网络的突变体,氢键数量增加,铰链区的α-螺旋变得更加刚性,这支持了以下假设:当铰链区的氢键网络增强时,肌红蛋白二聚体更稳定。这证明了氢键对于从具有三维结构域交换的单体设计蛋白质二聚体的重要性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25f3/9043842/5a0c86c3df27/d1ra06888a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验