Chen Ziyuan, Geffroy Laurent, Biteen Julie S
Department of Biophysics, University of Michigan, Ann Arbor, MI 48109.
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109.
Front Bioinform. 2021;1. doi: 10.3389/fbinf.2021.742073. Epub 2021 Sep 10.
Single particle tracking (SPT) enables the investigation of biomolecular dynamics at a high temporal and spatial resolution in living cells, and the analysis of these SPT datasets can reveal biochemical interactions and mechanisms. Still, how to make the best use of these tracking data for a broad set of experimental conditions remains an analysis challenge in the field. Here, we develop a new SPT analysis framework: NOBIAS (NOnparametric Bayesian Inference for Anomalous Diffusion in Single-Molecule Tracking), which applies nonparametric Bayesian statistics and deep learning approaches to thoroughly analyze SPT datasets. In particular, NOBIAS handles complicated live-cell SPT data for which: the number of diffusive states is unknown, mixtures of different diffusive populations may exist within single trajectories, symmetry cannot be assumed between the and directions, and anomalous diffusion is possible. NOBIAS provides the number of diffusive states without manual supervision, it quantifies the dynamics and relative populations of each diffusive state, it provides the transition probabilities between states, and it assesses the anomalous diffusion behavior for each state. We validate the performance of NOBIAS with simulated datasets and apply it to the diffusion of single outer-membrane proteins in . Furthermore, we compare NOBIAS with other SPT analysis methods and find that, in addition to these advantages, NOBIAS is robust and has high computational efficiency and is particularly advantageous due to its ability to treat experimental trajectories with asymmetry and anomalous diffusion.
单粒子追踪(SPT)能够在活细胞中以高时空分辨率研究生物分子动力学,对这些SPT数据集的分析可以揭示生化相互作用和机制。然而,如何在广泛的实验条件下充分利用这些追踪数据,仍然是该领域的一个分析挑战。在此,我们开发了一种新的SPT分析框架:NOBIAS(用于单分子追踪中反常扩散的非参数贝叶斯推断),它应用非参数贝叶斯统计和深度学习方法来全面分析SPT数据集。特别是,NOBIAS能够处理复杂的活细胞SPT数据,这类数据具有以下特点:扩散状态的数量未知、单条轨迹内可能存在不同扩散群体的混合、x和y方向之间不能假设具有对称性,并且可能存在反常扩散。NOBIAS无需人工监督即可提供扩散状态的数量,它能量化每个扩散状态的动力学和相对群体,提供状态之间的转移概率,并评估每个状态的反常扩散行为。我们用模拟数据集验证了NOBIAS的性能,并将其应用于大肠杆菌中外膜蛋白的扩散研究。此外,我们将NOBIAS与其他SPT分析方法进行了比较,发现除了上述优点外,NOBIAS还具有稳健性和高计算效率,并且由于其能够处理具有不对称性和反常扩散的实验轨迹而具有特别的优势。