Suppr超能文献

基于故障引入趋势下降的开源软件可靠性模型。

Software reliability model of open source software based on the decreasing trend of fault introduction.

机构信息

School of Automation and Software Engineering, Shanxi University, Taiyuan, People's Republic of China.

School of Computer Science and Technology, Harbin Institute of Technology at Weihai, Weihai, People's Republic of China.

出版信息

PLoS One. 2022 May 2;17(5):e0267171. doi: 10.1371/journal.pone.0267171. eCollection 2022.

Abstract

Open source software (OSS) has become one of the modern software development methods. OSS is mainly developed by developers, volunteers, and users all over the world, but its reliability has been widely questioned. When OSS faults are detected, volunteers or users send them to developers by email or network. After the developer confirms the fault, it will be randomly assigned to the debugger who may be a developer, a volunteer, or a user. These open source community contributors also have the phenomenon of learning when removing faults. When the detected faults are removed, the number of introduced faults decreases gradually. Therefore, this study proposes a software reliability model with the decreasing trend of fault introduction in the process of OSS development and testing. The validity of the proposed model and the accuracy of estimating residual faults are verified by experiments. The proposed model can be used to evaluate the reliability and predict the remaining faults in the actual OSS development and testing process.

摘要

开源软件(OSS)已成为现代软件开发方法之一。OSS 主要由全球各地的开发人员、志愿者和用户开发,但它的可靠性一直受到广泛质疑。当检测到 OSS 故障时,志愿者或用户通过电子邮件或网络将其发送给开发人员。开发人员确认故障后,将其随机分配给调试人员,调试人员可能是开发人员、志愿者或用户。这些开源社区贡献者在排除故障时也有学习的现象。当检测到的故障被排除时,引入的故障数量会逐渐减少。因此,本研究提出了一种在 OSS 开发和测试过程中引入故障呈下降趋势的软件可靠性模型。通过实验验证了所提出模型的有效性和剩余故障估计的准确性。所提出的模型可用于评估实际 OSS 开发和测试过程中的可靠性和预测剩余故障。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc53/9060381/9307d73eb3d5/pone.0267171.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验