Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, and the Institute for Advanced Studies, Wuhan University, Wuhan, China.
Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
J Biol Chem. 2022 Jun;298(6):101997. doi: 10.1016/j.jbc.2022.101997. Epub 2022 Apr 29.
Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor of endoplasmic reticulum (ER) stress and mediates a key branch of the unfolded protein response in eukaryotic cells. It is an ER-resident transmembrane protein that possesses Ser/Thr protein kinase and endoribonuclease (RNase) activities in its cytoplasmic region. IRE1 is activated through dimerization/oligomerization and autophosphorylation at multiple sites, acting through its RNase activity to restore the functional capacity of the ER. However, it remains poorly defined in vivo how the autophosphorylation events of endogenous IRE1 govern its dynamic activation and functional output. Here, we generated a mouse model harboring a S724A knock-in mutation (Ern1) and investigated the importance of phosphorylation at Ser within the kinase activation loop of murine IRE1α. We found that in mouse embryonic fibroblast cells and in primary hepatocytes, S724A mutation resulted in markedly reduced IRE1α autophosphorylation in parallel with blunted activation of its RNase activity to catalyze X-box binding protein 1 (Xbp1) mRNA splicing. Furthermore, ablation of IRE1α phosphorylation at Ser exacerbated ER stress-induced hepatic steatosis in tunicamycin-treated Ern1 mice. This was accompanied by significantly decreased hepatic production of spliced XBP1 protein but increased CCAAT-enhancer-binding protein homologous protein (CHOP) level, along with suppressed expression of key metabolic regulators of fatty acid β-oxidation and lipid secretion. These results demonstrate a critical role of phosphorylation at Ser of IRE1α in dynamically controlling its kinase activity, and thus its autophosphorylation state, which is coupled to activation of its RNase activity in counteracting hepatic steatosis under ER stress conditions.
肌醇需求酶 1(IRE1)是内质网(ER)应激的一种进化上保守的传感器,在真核细胞中介导未折叠蛋白反应的一个关键分支。它是一种内质网驻留的跨膜蛋白,在其细胞质区域具有丝氨酸/苏氨酸蛋白激酶和内切核糖核酸酶(RNase)活性。IRE1 通过二聚化/寡聚化和多个位点的自身磷酸化而被激活,通过其 RNase 活性作用来恢复 ER 的功能能力。然而,内源性 IRE1 的自身磷酸化事件如何调节其动态激活和功能输出在体内仍未得到很好的定义。在这里,我们生成了一种携带 S724A 点突变(Ern1)的小鼠模型,并研究了丝氨酸在鼠 IRE1α 激酶激活环中的磷酸化对其动态激活和功能输出的重要性。我们发现,在小鼠胚胎成纤维细胞和原代肝细胞中,S724A 突变导致 IRE1α 自身磷酸化显著减少,同时其 RNase 活性的激活减弱,无法催化 X 盒结合蛋白 1(Xbp1)mRNA 剪接。此外,在衣霉素处理的 Ern1 小鼠中,IRE1α 丝氨酸磷酸化的缺失加剧了 ER 应激诱导的肝脂肪变性。这伴随着 spliced XBP1 蛋白的肝产生显著减少,但 CCAAT 增强子结合蛋白同源蛋白(CHOP)水平增加,以及脂肪酸β-氧化和脂质分泌的关键代谢调节剂的表达受到抑制。这些结果表明,IRE1α 的丝氨酸磷酸化在动态控制其激酶活性方面起着关键作用,从而控制其自身磷酸化状态,这与在 ER 应激条件下激活其 RNase 活性以对抗肝脂肪变性有关。