Suppr超能文献

基于质谱的宏蛋白质组学中通过改进的期望最大化算法进行跨分类水平的生物学功能分配

Biological Function Assignment across Taxonomic Levels in Mass-Spectrometry-Based Metaproteomics via a Modified Expectation Maximization Algorithm.

作者信息

Alves Gelio, Ogurtsov Aleksey Y, Yu Yi-Kuo

机构信息

Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States.

出版信息

J Proteome Res. 2025 Aug 1;24(8):3818-3832. doi: 10.1021/acs.jproteome.4c01125. Epub 2025 Jul 18.

Abstract

A major challenge in mass-spectrometry-based metaproteomics is accurately identifying and quantifying biological functions across the full taxonomic lineage of microorganisms. This issue stems from what we refer to as the "shared confidently identified peptide problem″. To address this issue, most metaproteomics tools rely on the lowest common ancestor (LCA) algorithm to assign biological functions, which often leads to incomplete biological function assignments across the full taxonomic lineage of identified microorganisms. To overcome this limitation, we implemented an expectation-maximization (EM) algorithm, along with a biological function database, within the MiCId workflow. Using synthetic datasets, our study demonstrates that the enhanced MiCId workflow achieves better control over false discoveries and improved accuracy in microorganism identification and biomass estimation compared to Unipept and MetaGOmics. Additionally, the updated MiCId offers improved accuracy and better control of false discoveries in biological function identification compared to Unipept, along with reliable computation of function abundances across the full taxonomic lineage of identified microorganisms. Reanalyzing human oral and gut microbiome datasets using the enhanced MiCId workflow, we show that the results are consistent with those reported in the original publications, which were analyzed using the Galaxy-P platform with MEGAN5 and the MetaPro-IQ approach with Unipept, respectively.

摘要

基于质谱的宏蛋白质组学面临的一个主要挑战是,准确识别和量化微生物全部分类谱系中的生物学功能。这个问题源于我们所说的“共享的可靠鉴定肽问题”。为了解决这个问题,大多数宏蛋白质组学工具依靠最低共同祖先(LCA)算法来分配生物学功能,这往往导致在已鉴定微生物的全部分类谱系中生物学功能分配不完整。为了克服这一局限性,我们在MiCId工作流程中实施了期望最大化(EM)算法以及一个生物学功能数据库。通过合成数据集,我们的研究表明,与Unipept和MetaGOmics相比,增强后的MiCId工作流程在错误发现控制方面表现更好,在微生物鉴定和生物量估计方面准确性更高。此外,与Unipept相比,更新后的MiCId在生物学功能鉴定方面准确性更高,对错误发现的控制更好,同时能可靠地计算已鉴定微生物全部分类谱系中的功能丰度。使用增强后的MiCId工作流程重新分析人类口腔和肠道微生物组数据集,我们发现结果与原始出版物中报告的结果一致,原始出版物分别使用带有MEGAN5的Galaxy-P平台和带有Unipept的MetaPro-IQ方法进行分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验