Suppr超能文献

基于高分辨串联质谱的高通量、高准确性微生物快速分类鉴定技术

Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

机构信息

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.

Proteomics Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

出版信息

J Am Soc Mass Spectrom. 2018 Aug;29(8):1721-1737. doi: 10.1007/s13361-018-1986-y. Epub 2018 Jun 5.

Abstract

Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

摘要

快速准确地识别和分类微生物对公共卫生和安全至关重要。随着质谱 (MS) 技术的进步,鉴定速度可以大大提高。然而,由于存在大量的候选物,即使在简单的样本中,测序微生物的数量不断增加也使得正确的微生物鉴定变得复杂。为了正确地解开样品中候选微生物的纠缠,需要超越明显的形态或简单的“指纹”;为了正确地确定候选微生物的优先级,需要在微生物识别方面具有准确的统计显著性。我们通过使用微生物的肽中心表示来更好地分离它们,并通过增强我们早期的分析方法来应对这些挑战,该方法可以产生准确的统计显著性。在这里,我们提出了一个使用串联 MS (MS/MS) 光谱进行微生物鉴定或分类的更新分析工作流程。我们已经使用 226 个公开可用的 MS/MS 数据文件(每个文件包含 2500 到近 100000 个 MS/MS 光谱)和 4000 个额外的 MS/MS 数据文件进行了演示,更新的工作流程可以正确识别含有多个微生物的样品中的多个微生物,通常是属水平,有时甚至是种水平。我们还表明,所提出的工作流程计算出准确的统计显著性,即鉴定肽的 E 值和鉴定微生物的统一 E 值。我们的更新分析工作流程 MiCId,一个用于微生物分类和鉴定的免费软件,可在 https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html 下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/138e/6061032/42231782e0f2/13361_2018_1986_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验