Suppr超能文献

基于 U-Net 使用粗粒度和稀疏标注对皮肤活检图像进行分割。

Segmenting Skin Biopsy Images with Coarse and Sparse Annotations using U-Net.

机构信息

University of Washington, Seattle, WA, 98195, USA.

Pathology Department, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

J Digit Imaging. 2022 Oct;35(5):1238-1249. doi: 10.1007/s10278-022-00641-8. Epub 2022 May 2.

Abstract

The number of melanoma diagnoses has increased dramatically over the past three decades, outpacing almost all other cancers. Nearly 1 in 4 skin biopsies is of melanocytic lesions, highlighting the clinical and public health importance of correct diagnosis. Deep learning image analysis methods may improve and complement current diagnostic and prognostic capabilities. The histologic evaluation of melanocytic lesions, including melanoma and its precursors, involves determining whether the melanocytic population involves the epidermis, dermis, or both. Semantic segmentation of clinically important structures in skin biopsies is a crucial step towards an accurate diagnosis. While training a segmentation model requires ground-truth labels, annotation of large images is a labor-intensive task. This issue becomes especially pronounced in a medical image dataset in which expert annotation is the gold standard. In this paper, we propose a two-stage segmentation pipeline using coarse and sparse annotations on a small region of the whole slide image as the training set. Segmentation results on whole slide images show promising performance for the proposed pipeline.

摘要

在过去的三十年中,黑色素瘤的诊断数量急剧增加,超过了几乎所有其他癌症。几乎每 4 份皮肤活检中就有 1 份是黑素细胞病变,这凸显了正确诊断的临床和公共卫生重要性。深度学习图像分析方法可以提高和补充当前的诊断和预后能力。黑素细胞病变的组织学评估,包括黑色素瘤及其前体,涉及确定黑素细胞群体是否涉及表皮、真皮或两者都涉及。皮肤活检中临床重要结构的语义分割是实现准确诊断的关键步骤。虽然训练分割模型需要真实标签,但注释大图像是一项劳动密集型任务。在专家注释是黄金标准的医学图像数据集,这个问题尤其突出。在本文中,我们提出了一种两阶段分割管道,使用全幻灯片图像的小区域上的粗和稀疏注释作为训练集。全幻灯片图像上的分割结果表明,所提出的管道具有有前景的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5618/9582104/5ef34d729d2b/10278_2022_641_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验