Suppr超能文献

全玻片数字皮肤活检图像的自动化分析

Automated analysis of whole slide digital skin biopsy images.

作者信息

Nofallah Shima, Wu Wenjun, Liu Kechun, Ghezloo Fatemeh, Elmore Joann G, Shapiro Linda G

机构信息

Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States.

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States.

出版信息

Front Artif Intell. 2022 Sep 20;5:1005086. doi: 10.3389/frai.2022.1005086. eCollection 2022.

Abstract

A rapidly increasing rate of melanoma diagnosis has been noted over the past three decades, and nearly 1 in 4 skin biopsies are diagnosed as melanocytic lesions. The gold standard for diagnosis of melanoma is the histopathological examination by a pathologist to analyze biopsy material at both the cellular and structural levels. A pathologist's diagnosis is often subjective and prone to variability, while deep learning image analysis methods may improve and complement current diagnostic and prognostic capabilities. Mitoses are important entities when reviewing skin biopsy cases as their presence carries prognostic information; thus, their precise detection is an important factor for clinical care. In addition, semantic segmentation of clinically important structures in skin biopsies might help the diagnosis pipeline with an accurate classification. We aim to provide prognostic and diagnostic information on skin biopsy images, including the detection of cellular level entities, segmentation of clinically important tissue structures, and other important factors toward the accurate diagnosis of skin biopsy images. This paper is an overview of our work on analysis of digital whole slide skin biopsy images, including mitotic figure (mitosis) detection, semantic segmentation, diagnosis, and analysis of pathologists' viewing patterns, and with new work on melanocyte detection. Deep learning has been applied to our methods for all the detection, segmentation, and diagnosis work. In our studies, deep learning is proven superior to prior approaches to skin biopsy analysis. Our work on analysis of pathologists' viewing patterns is the only such work in the skin biopsy literature. Our work covers the whole spectrum from low-level entities through diagnosis and understanding what pathologists do in performing their diagnoses.

摘要

在过去三十年中,黑色素瘤的诊断率迅速上升,近四分之一的皮肤活检被诊断为黑素细胞病变。黑色素瘤诊断的金标准是由病理学家进行组织病理学检查,在细胞和结构层面分析活检材料。病理学家的诊断往往具有主观性且容易出现差异,而深度学习图像分析方法可能会改善并补充当前的诊断和预后能力。在审查皮肤活检病例时,有丝分裂是重要的观察对象,因为其存在携带预后信息;因此,精确检测有丝分裂是临床护理的一个重要因素。此外,对皮肤活检中临床重要结构进行语义分割可能有助于诊断流程进行准确分类。我们旨在提供有关皮肤活检图像的预后和诊断信息,包括细胞水平观察对象的检测、临床重要组织结构的分割以及有助于准确诊断皮肤活检图像的其他重要因素。本文概述了我们在数字全切片皮肤活检图像分析方面的工作,包括有丝分裂图(有丝分裂)检测、语义分割、诊断以及对病理学家观察模式的分析,还有关于黑素细胞检测的新工作。深度学习已应用于我们所有的检测、分割和诊断工作方法中。在我们的研究中,深度学习被证明优于先前的皮肤活检分析方法。我们对病理学家观察模式的分析工作是皮肤活检文献中唯一此类工作。我们的工作涵盖了从低层次观察对象到诊断以及理解病理学家在进行诊断时所做工作的整个范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bd3/9531680/1be7a8cc55df/frai-05-1005086-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验