Chen Zhenya, Chen Tongtong, Yu Shengzhu, Huo Yi-Xin
Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China.
Biotechnol Biofuels Bioprod. 2022 May 2;15(1):43. doi: 10.1186/s13068-022-02142-w.
Gallic acid (GA) and pyrogallol are phenolic hydroxyl compounds and have diverse biological activities. Microbial-based biosynthesis, as an ecofriendly method, has been used for GA and pyrogallol production. In GA and pyrogallol biosynthetic pathways, the low hydroxylation activity of p-hydroxybenzoate hydroxylase (PobA) towards 3,4-dihydroxybenzoic acid (3,4-DHBA) limited the high-level biosynthesis of GA and pyrogallol.
This work reported a high activity PobA mutant (Y385F/T294A/V349A PobA) towards 3,4-DHBA. This mutant was screened out from a PobA random mutagenesis library through a novel naked eye visual screening method. In vitro enzyme assay showed this mutant has a k/K of 0.059 μM s towards 3,4-DHBA, which was 4.92-fold higher than the reported mutant (Y385F/T294A PobA). Molecular docking simulation provided the possible catalytic mechanism explanation of the high activity mutant. Expression of this mutant in E. coli BW25113 (F') can generate 840 ± 23 mg/L GA from 1000 mg/L 3,4-DHBA. After that, this mutant was assembled into a de novo GA biosynthetic pathway. Subsequently, this pathway was introduced into a 3,4-DHBA-producing strain (E. coli BW25113 (F')ΔaroE) to achieve 301 ± 15 mg/L GA production from simple carbon sources. Similarly, assembling this mutant into a de novo pyrogallol biosynthetic pathway enabled 129 ± 15 mg/L pyrogallol production.
This work established an efficient screening method and generated a high activity PobA mutant. Assembling this mutant into de novo GA and pyrogallol biosynthetic pathways achieved the production of these two compounds from glucose. Besides, this mutant has great potential for the production of GA or pyrogallol derivatives. The screening method could be used for other GA biosynthesis-related enzymes.
没食子酸(GA)和连苯三酚是酚羟基化合物,具有多种生物活性。基于微生物的生物合成作为一种生态友好型方法,已被用于GA和连苯三酚的生产。在GA和连苯三酚的生物合成途径中,对羟基苯甲酸羟化酶(PobA)对3,4 - 二羟基苯甲酸(3,4 - DHBA)的低羟化活性限制了GA和连苯三酚的高水平生物合成。
这项工作报道了一种对3,4 - DHBA具有高活性的PobA突变体(Y385F/T294A/V349A PobA)。通过一种新型肉眼视觉筛选方法从PobA随机诱变文库中筛选出该突变体。体外酶活性测定表明,该突变体对3,4 - DHBA的k/K为0.059 μM·s,比报道的突变体(Y385F/T294A PobA)高4.92倍。分子对接模拟为高活性突变体提供了可能的催化机制解释。该突变体在大肠杆菌BW25113(F')中的表达可从1000 mg/L的3,4 - DHBA产生840±23 mg/L的GA。之后,将该突变体组装成一条全新的GA生物合成途径。随后,将该途径引入一株3,4 - DHBA生产菌株(大肠杆菌BW25113(F')ΔaroE),以从简单碳源实现301±15 mg/L的GA产量。同样,将该突变体组装成一条全新的连苯三酚生物合成途径可实现129±15 mg/L的连苯三酚产量。
这项工作建立了一种高效筛选方法,并产生了一种高活性的PobA突变体。将该突变体组装到全新的GA和连苯三酚生物合成途径中实现了从葡萄糖生产这两种化合物。此外,该突变体在生产GA或连苯三酚衍生物方面具有巨大潜力。该筛选方法可用于其他与GA生物合成相关的酶。