Pan Yi, Yang Zhenyu, Li Chang, Hassan Sammer Ul, Shum Ho Cheung
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
Sci Adv. 2022 May 6;8(18):eabo1719. doi: 10.1126/sciadv.abo1719. Epub 2022 May 4.
The healthy functioning of the plants' vasculature depends on their ability to respond to environmental changes. In contrast, synthetic microfluidic systems have rarely demonstrated this environmental responsiveness. Plants respond to environmental stimuli through nastic movement, which inspires us to introduce transformable microfluidics: By embedding stimuli-responsive materials, the microfluidic device can respond to temperature, humidity, and light irradiance. Furthermore, by designing a foldable geometry, these responsive movements can follow the preset origami transformation. We term this device TransfOrigami microfluidics (TOM) to highlight the close connection between its transformation and the origami structure. TOM can be used as an environmentally adaptive photomicroreactor. It senses the environmental stimuli and feeds them back positively into photosynthetic conversion through morphological transformation. The principle behind this morphable microsystem can potentially be extended to applications that require responsiveness between the environment and the devices, such as dynamic artificial vascular networks and shape-adaptive flexible electronics.
植物脉管系统的健康运作取决于它们对环境变化作出反应的能力。相比之下,合成微流体系统很少表现出这种环境响应性。植物通过感性运动对环境刺激作出反应,这启发我们引入可变形微流体技术:通过嵌入对刺激有响应的材料,微流体装置可以对温度、湿度和光照强度作出反应。此外,通过设计可折叠的几何结构,这些响应运动可以遵循预设的折纸变换。我们将这种装置称为“变换折纸微流体技术”(TOM),以突出其变换与折纸结构之间的紧密联系。TOM可用作环境适应性光微反应器。它感知环境刺激,并通过形态变换将其积极反馈到光合转化过程中。这种可变形微系统背后的原理可能会扩展到需要环境与设备之间具有响应性的应用中,例如动态人工血管网络和形状自适应柔性电子器件。