Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
Cell Mol Life Sci. 2022 May 4;79(5):281. doi: 10.1007/s00018-022-04296-0.
MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1's role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.
MEK1 与 B-Raf 和 KSR1 的相互作用是 Ras/Raf/MEK/ERK 信号转导的关键步骤。尽管如此,这些执行信号转导的关键机制细节仍然是神秘的。其中包括,尽管 B-Raf 和 KSR1 的激酶结构域具有相似性,但 B-Raf/MEK1 和 KSR1/MEK1 复合物对 MEK1 的激活有不同的贡献,以及 KSR1 的作用是什么。我们的分子动力学模拟澄清了这些仍然未解决的模糊性。我们的结果表明,MEK1 的脯氨酸丰富(P-rich)环在 MEK1 激活环(A 环)磷酸化中起着决定性的作用。在非活性的 B-Raf/MEK1 异二聚体中,B-Raf 的折叠 A 环与 MEK1 的 P-rich 环和 A 环相互作用,使 MEK1 的 A 环波动最小化,并阻止其磷酸化。在活性的 B-Raf/MEK1 异二聚体中,随着 P-rich 环与 B-Raf 的 A 环一起延伸,P-rich 环协同移动。这减少了与 MEK1 A 环相互作用的残基数,允许增加 A 环波动,并使 Ser222 更接近 ATP 进行磷酸化。B-Raf αG-螺旋 Arg662 通过将 Ser218 定向到 ATP 来促进 MEK1 的激活。在 KSR1/MEK1 中,KSR1 的 αG-螺旋具有 Ala826 而不是 B-Raf 的 Arg662。这种差异导致 KSR1 的 αG-螺旋与 MEK1 的 A 环之间的相互作用少得多,因此 A 环更灵活。我们推测,如果 KSR1 采用与其他蛋白激酶中所见类似的延伸 A 环的活性构象,那么 MEK1 的 P-rich 环将以类似的方式延伸,就像在活性的 B-Raf/MEK1 异二聚体中一样。这将导致高度灵活的 MEK1 A 环,并且 KSR1 作为一个活性的、类似 B-Raf 的激酶发挥作用。