Suppr超能文献

全息操控纳米结构光纤实现了对等离子体局域场增强和 SERS 的空间分辨、可重构光学控制。

Holographic Manipulation of Nanostructured Fiber Optics Enables Spatially-Resolved, Reconfigurable Optical Control of Plasmonic Local Field Enhancement and SERS.

机构信息

Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Arnesano LE, 73010, Italy.

Dipartimento di Ingegneria Elettrica e dell'Informazione, Politecnico di Bari, Bari, 70125, Italy.

出版信息

Small. 2022 Jun;18(23):e2200975. doi: 10.1002/smll.202200975. Epub 2022 May 4.

Abstract

Integration of plasmonic structures on step-index optical fibers is attracting interest for both applications and fundamental studies. However, the possibility to dynamically control the coupling between the guided light fields and the plasmonic resonances is hindered by the turbidity of light propagation in multimode fibers (MMFs). This pivotal point strongly limits the range of studies that can benefit from nanostructured fiber optics. Fortunately, harnessing the interaction between plasmonic modes on the fiber tip and the full set of guided modes can bring this technology to a next generation progress. Here, the intrinsic wealth of information of guided modes is exploited to spatiotemporally control the plasmonic resonances of the coupled system. This concept is shown by employing dynamic phase modulation to structure both the response of plasmonic MMFs on the plasmonic facet and their response in the corresponding Fourier plane, achieving spatial selective field enhancement and direct control of the probe's work point in the dispersion diagram. Such a conceptual leap would transform the biomedical applications of holographic endoscopic imaging by integrating new sensing and manipulation capabilities.

摘要

在阶跃折射率光纤上集成等离子体结构引起了人们的兴趣,既用于实际应用,也用于基础研究。然而,由于多模光纤(MMF)中光传播的浑浊,动态控制导光场与等离子体共振之间的耦合的可能性受到了阻碍。这一关键点极大地限制了可以从纳米结构光纤光学中受益的研究范围。幸运的是,利用光纤尖端上的等离子体模式与全组导模之间的相互作用,可以使这项技术取得下一代的进展。在这里,利用导模的固有丰富信息来时空控制耦合系统的等离子体共振。通过采用动态相位调制来构建等离子体 MMF 在等离子体面上的响应及其在相应傅里叶平面上的响应,从而实现了空间选择性场增强和对探针在色散图中工作点的直接控制,证明了这一概念。这样的概念飞跃将通过集成新的传感和操纵能力,改变全息内窥镜成像的生物医学应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验