Suppr超能文献

振动光纤光度法:无标记、无报告基因的微创拉曼光谱深入小鼠大脑。

Vibrational fiber photometry: label-free and reporter-free minimally invasive Raman spectroscopy deep in the mouse brain.

作者信息

Pisano Filippo, Masmudi-Martín Mariam, Andriani Maria Samuela, Cid Elena, Kazemzadeh Mohammadrahim, Pisanello Marco, Balena Antonio, Collard Liam, Parras Teresa Jurado, Bianco Marco, Baena Patricia, Tantussi Francesco, Grande Marco, Sileo Leonardo, Gentile Francesco, De Angelis Francesco, De Vittorio Massimo, Menendez de la Prida Liset, Valiente Manuel, Pisanello Ferruccio

机构信息

Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy.

Department of Physics and Astronomy, University of Padova, Padova, Italy.

出版信息

Nat Methods. 2025 Feb;22(2):371-379. doi: 10.1038/s41592-024-02557-3. Epub 2024 Dec 31.

Abstract

Optical approaches to monitor neural activity are transforming neuroscience, owing to a fast-evolving palette of genetically encoded molecular reporters. However, the field still requires robust and label-free technologies to monitor the multifaceted biomolecular changes accompanying brain development, aging or disease. Here, we have developed vibrational fiber photometry as a low-invasive method for label-free monitoring of the biomolecular content of arbitrarily deep regions of the mouse brain in vivo through spontaneous Raman spectroscopy. Using a tapered fiber probe as thin as 1 µm at its tip, we elucidate the cytoarchitecture of the mouse brain, monitor molecular alterations caused by traumatic brain injury, as well as detect markers of brain metastasis with high accuracy. We view our approach, which introduces a deep learning algorithm to suppress probe background, as a promising complement to the existing palette of tools for the optical interrogation of neural function, with application to fundamental and preclinical investigations of the brain and other organs.

摘要

由于基因编码分子报告器的快速发展,用于监测神经活动的光学方法正在改变神经科学。然而,该领域仍然需要强大的无标记技术来监测伴随大脑发育、衰老或疾病的多方面生物分子变化。在这里,我们开发了振动光纤光度法,作为一种低侵入性方法,通过自发拉曼光谱在体内对小鼠大脑任意深度区域的生物分子含量进行无标记监测。使用尖端细至1微米的锥形光纤探头,我们阐明了小鼠大脑的细胞结构,监测了创伤性脑损伤引起的分子变化,并高精度地检测了脑转移瘤标志物。我们认为我们的方法引入了一种深度学习算法来抑制探头背景,是对现有神经功能光学检测工具的一种有前途的补充,可应用于大脑和其他器官的基础和临床前研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验