Pisano Filippo, Masmudi-Martín Mariam, Andriani Maria Samuela, Cid Elena, Kazemzadeh Mohammadrahim, Pisanello Marco, Balena Antonio, Collard Liam, Parras Teresa Jurado, Bianco Marco, Baena Patricia, Tantussi Francesco, Grande Marco, Sileo Leonardo, Gentile Francesco, De Angelis Francesco, De Vittorio Massimo, Menendez de la Prida Liset, Valiente Manuel, Pisanello Ferruccio
Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy.
Department of Physics and Astronomy, University of Padova, Padova, Italy.
Nat Methods. 2025 Feb;22(2):371-379. doi: 10.1038/s41592-024-02557-3. Epub 2024 Dec 31.
Optical approaches to monitor neural activity are transforming neuroscience, owing to a fast-evolving palette of genetically encoded molecular reporters. However, the field still requires robust and label-free technologies to monitor the multifaceted biomolecular changes accompanying brain development, aging or disease. Here, we have developed vibrational fiber photometry as a low-invasive method for label-free monitoring of the biomolecular content of arbitrarily deep regions of the mouse brain in vivo through spontaneous Raman spectroscopy. Using a tapered fiber probe as thin as 1 µm at its tip, we elucidate the cytoarchitecture of the mouse brain, monitor molecular alterations caused by traumatic brain injury, as well as detect markers of brain metastasis with high accuracy. We view our approach, which introduces a deep learning algorithm to suppress probe background, as a promising complement to the existing palette of tools for the optical interrogation of neural function, with application to fundamental and preclinical investigations of the brain and other organs.
由于基因编码分子报告器的快速发展,用于监测神经活动的光学方法正在改变神经科学。然而,该领域仍然需要强大的无标记技术来监测伴随大脑发育、衰老或疾病的多方面生物分子变化。在这里,我们开发了振动光纤光度法,作为一种低侵入性方法,通过自发拉曼光谱在体内对小鼠大脑任意深度区域的生物分子含量进行无标记监测。使用尖端细至1微米的锥形光纤探头,我们阐明了小鼠大脑的细胞结构,监测了创伤性脑损伤引起的分子变化,并高精度地检测了脑转移瘤标志物。我们认为我们的方法引入了一种深度学习算法来抑制探头背景,是对现有神经功能光学检测工具的一种有前途的补充,可应用于大脑和其他器官的基础和临床前研究。