Nevo Daniel, Lok Judith J, Spiegelman Donna
Department of Statistics and Operations Research, Tel Aviv University.
Department of Mathematics and Statistics, Boston University.
Ann Stat. 2021 Apr;49(2):793-819. doi: 10.1214/20-aos1978. Epub 2021 Apr 2.
In Learn-As-you-GO (LAGO) adaptive studies, the intervention is a complex multicomponent package, and is adapted in stages during the study based on past outcome data. This design formalizes standard practice in public health intervention studies. An effective intervention package is sought, while minimizing intervention package cost. In LAGO study data, the interventions in later stages depend upon the outcomes in the previous stages, violating standard statistical theory. We develop an estimator for the intervention effects, and prove consistency and asymptotic normality using a novel coupling argument, ensuring the validity of the test for the hypothesis of no overall intervention effect. We develop a confidence set for the optimal intervention package and confidence bands for the success probabilities under alternative package compositions. We illustrate our methods in the BetterBirth Study, which aimed to improve maternal and neonatal outcomes among 157,689 births in Uttar Pradesh, India through a multicomponent intervention package.
在边学边做(LAGO)适应性研究中,干预措施是一个复杂的多组分组合,并在研究过程中根据过去的结果数据分阶段进行调整。这种设计使公共卫生干预研究中的标准做法形式化。在寻求有效的干预组合时,要尽量降低干预组合成本。在LAGO研究数据中,后期阶段的干预措施取决于前一阶段的结果,这违反了标准统计理论。我们开发了一种干预效果估计器,并使用一种新颖的耦合论证证明了其一致性和渐近正态性,确保了对无总体干预效果假设检验的有效性。我们为最优干预组合开发了一个置信集,并为替代组合构成下的成功概率开发了置信带。我们在“更好的分娩”研究中展示了我们的方法,该研究旨在通过一个多组分干预组合改善印度北方邦157,689例分娩中的孕产妇和新生儿结局。