Garemark Jonas, Perea-Buceta Jesus E, Rico Del Cerro Daniel, Hall Stephen, Berke Barbara, Kilpeläinen Ilkka, Berglund Lars A, Li Yuanyuan
Wallenberg Wood Science Center, Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00560 Helsinki, Finland.
ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24697-24707. doi: 10.1021/acsami.2c04584. Epub 2022 May 5.
Eco-friendly materials with superior thermal insulation and mechanical properties are desirable for improved energy- and space-efficiency in buildings. Cellulose aerogels with structural anisotropy could fulfill these requirements, but complex processing and high energy demand are challenges for scaling up. Here we propose a scalable, nonadditive, top-down fabrication of strong anisotropic aerogels directly from wood with excellent, near isotropic thermal insulation functions. The aerogel was obtained through cell wall dissolution and controlled precipitation in lumen, using an ionic liquid (IL) mixture comprising DMSO and a guanidinium phosphorus-based IL [MTBD][MMP]. The wood aerogel shows a unique structure with lumen filled with nanofibrils network. In situ formation of a cellulosic nanofibril network in the lumen results in specific surface areas up to 280 m/g and high yield strengths >1.2 MPa. The highly mesoporous structure (average pore diameter ∼20 nm) of freeze-dried wood aerogels leads to low thermal conductivities in both the radial (0.037 W/mK) and axial (0.057 W/mK) directions, showing great potential as scalable thermal insulators. This synthesis route is energy efficient with high nanostructural controllability. The unique nanostructure and rare combination of strength and thermal properties set the material apart from comparable bottom-up aerogels. This nonadditive synthesis approach is believed to contribute significantly toward large-scale design and structure control of biobased aerogels.
具有优异隔热和机械性能的环保材料对于提高建筑的能源和空间效率是很有必要的。具有结构各向异性的纤维素气凝胶能够满足这些要求,但复杂的加工过程和高能量需求是扩大规模的挑战。在此,我们提出一种可扩展、无添加剂、自上而下直接从木材制备具有优异近各向同性隔热功能的强各向异性气凝胶的方法。该气凝胶是通过细胞壁溶解和在细胞腔中控制沉淀获得的,使用了一种由二甲基亚砜(DMSO)和一种基于胍基磷的离子液体[MTBD][MMP]组成的离子液体混合物。木材气凝胶呈现出一种独特的结构,细胞腔中填充着纳米纤维网络。在细胞腔内原位形成纤维素纳米纤维网络导致比表面积高达280 m²/g,屈服强度>1.2 MPa。冻干木材气凝胶的高度介孔结构(平均孔径约20 nm)导致其在径向(0.037 W/mK)和轴向(0.057 W/mK)方向的热导率都很低,显示出作为可扩展隔热材料的巨大潜力。这种合成路线具有高能效和高纳米结构可控性。这种独特的纳米结构以及强度和热性能的罕见组合使该材料有别于类似的自下而上制备的气凝胶。这种无添加剂的合成方法被认为将对生物基气凝胶的大规模设计和结构控制做出重大贡献。