Neuromuscular Division, Department of Neurology, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
Sci Rep. 2023 Apr 5;13(1):5597. doi: 10.1038/s41598-023-31720-7.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by degeneration of upper and lower motor neurons that leads to muscle weakness, paralysis, and death, but the effects of disease-causing mutations on axonal outgrowth of neurons derived from human induced pluripotent stem cells (iPSC)-derived motor neurons (hiPSC-MN) are poorly understood. The use of hiPSC-MN is a promising tool to develop more relevant models for target identification and drug development in ALS research, but questions remain concerning the effects of distinct disease-causing mutations on axon regeneration. Mutations in superoxide dismutase 1 (SOD1) were the first to be discovered in ALS patients. Here, we investigated the effect of the SOD1 mutation on axonal regeneration of hiPSC-MNs, utilizing compartmentalized microfluidic devices, which are powerful tools for studying hiPSC-MN distal axons. Surprisingly, SOD1 hiPSC-MNs regenerated axons more quickly following axotomy than those expressing the native form of SOD1. Though initial axon regrowth was not significantly different following axotomy, enhanced regeneration was apparent at later time points, indicating an increased rate of outgrowth. This regeneration model could be used to identify factors that enhance the rate of human axon regeneration.
肌萎缩侧索硬化症(ALS)是一种毁灭性的神经退行性疾病,其特征是上下运动神经元的退化,导致肌肉无力、瘫痪和死亡,但导致疾病的突变对源自人诱导多能干细胞(iPSC)的运动神经元(hiPSC-MN)的轴突生长的影响知之甚少。使用 hiPSC-MN 是开发更相关的模型以用于 ALS 研究中的目标识别和药物开发的有前途的工具,但关于不同致病突变对轴突再生的影响仍存在疑问。超氧化物歧化酶 1(SOD1)的突变是最早在 ALS 患者中发现的。在这里,我们利用分区微流控设备研究了 SOD1 突变对 hiPSC-MN 轴突再生的影响,分区微流控设备是研究 hiPSC-MN 远端轴突的有力工具。令人惊讶的是,与表达天然形式的 SOD1 的 hiPSC-MN 相比,SOD1 hiPSC-MN 在轴突切断后更快地再生轴突。尽管在轴突切断后初始轴突再生没有明显差异,但在稍后的时间点明显增强了再生,表明生长速度增加。这种再生模型可用于鉴定增强人轴突再生速度的因素。