Suppr超能文献

通过宏基因组分析,秸秆废弃物在异位发酵系统中猪粪的好氧过程中促进了微生物功能多样性和木质纤维素的降解。

Straw waste promotes microbial functional diversity and lignocellulose degradation during the aerobic process of pig manure in an ectopic fermentation system via metagenomic analysis.

机构信息

Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China.

Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, PR China.

出版信息

Sci Total Environ. 2022 Sep 10;838(Pt 1):155637. doi: 10.1016/j.scitotenv.2022.155637. Epub 2022 May 2.

Abstract

This study compares the physicochemical properties, lignocellulose degradation, microbial community composition, and carbohydrate-active enzymes (CAZymes) in ectopic fermentation systems (EFS) of pig manure mixed with either conventional padding (C) or straw waste (A). The degradation rates of cellulose, hemicellulose, and lignin were found to be significantly higher in A (27.72%, 22.72%, and 18.80%, respectively) than in C (21.05%, 16.17%, and 11.69%, respectively) owing to the activities of lignocellulolytic enzymes. Metagenomics revealed that straw addition had a stronger effect on the bacterial community succession than fungi. The abundances of Sphingobacterium, Pseudomonas, and CAZymes were higher in A than in C, as well as the auxiliary activity enzymes, which are crucial for lignocellulose degradation. Redundancy analysis indicates a positive correlation between lignocellulose degradation and Sphingobacterium, Pseudomonas, Bacillus, and Actinobacteria contents. A structural equation model was applied to further verify that the increased microbial functional diversity was the primary driver of lignocellulosic degradation, which could be effectively regulated by the enhanced temperature with straw addition. Replacing traditional padding with straw can thus accelerate lignocellulosic degradation, promote microbial functional diversity, and improve the EFS efficiency.

摘要

本研究比较了猪粪与传统垫料(C)或秸秆废物(A)混合的异位发酵系统(EFS)中的理化性质、木质纤维素降解、微生物群落组成和碳水化合物活性酶(CAZymes)。由于木质纤维素降解酶的活性,A 组(分别为 27.72%、22.72%和 18.80%)中纤维素、半纤维素和木质素的降解率明显高于 C 组(分别为 21.05%、16.17%和 11.69%)。宏基因组学揭示,秸秆的添加对细菌群落演替的影响强于真菌。A 组中鞘氨醇单胞菌、假单胞菌和 CAZymes 的丰度高于 C 组,辅助活性酶的丰度也高于 C 组,这些酶对木质纤维素的降解至关重要。冗余分析表明,木质纤维素降解与鞘氨醇单胞菌、假单胞菌、芽孢杆菌和放线菌含量呈正相关。结构方程模型进一步验证了增加的微生物功能多样性是木质纤维素降解的主要驱动因素,通过添加秸秆可以有效调节温度升高来实现。因此,用秸秆代替传统垫料可以加速木质纤维素的降解,促进微生物功能多样性,并提高 EFS 的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验