Chen Chengjun, Zhao Xicong, Wang Jinlei, Li Dongnian, Guan Yuanlin, Hong Jun
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, Shandong, China.
School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, Shanxi, China.
Sci Rep. 2022 May 5;12(1):7394. doi: 10.1038/s41598-022-11206-8.
Intelligent recognition of assembly behaviors of workshop production personnel is crucial to improve production assembly efficiency and ensure production safety. This paper proposes a graph convolutional network model for assembly behavior recognition based on attention mechanism and multi-scale feature fusion. The proposed model learns the potential relationship between assembly actions and assembly tools for recognizing assembly behaviors. Meanwhile, the introduction of an attention mechanism helps the network to focus on the key information in assembly behavior images. Besides, the multi-scale feature fusion module is introduced to enable the network to better extract image features at different scales. This paper constructs a data set containing 15 types of workshop production behaviors, and the proposed assembly behavior recognition model is tested on this data set. The experimental results show that the proposed model achieves good recognition results, with an average assembly recognition accuracy of 93.1%.
智能识别车间生产人员的装配行为对于提高生产装配效率和确保生产安全至关重要。本文提出了一种基于注意力机制和多尺度特征融合的用于装配行为识别的图卷积网络模型。所提出的模型学习装配动作与装配工具之间的潜在关系以识别装配行为。同时,注意力机制的引入有助于网络聚焦于装配行为图像中的关键信息。此外,引入多尺度特征融合模块使网络能够更好地提取不同尺度下的图像特征。本文构建了一个包含15种车间生产行为的数据集,并在所构建的数据集上对所提出的装配行为识别模型进行了测试。实验结果表明,所提出的模型取得了良好的识别效果,平均装配识别准确率达到93.1%。