Lou Yangbing, Sun Fengcheng, Ni Jun
S.M. Wu Manufacturing Research Center, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
Shanghai Anmai Future Energy Ltd, Shanghai, China.
Heliyon. 2024 May 10;10(10):e31119. doi: 10.1016/j.heliyon.2024.e31119. eCollection 2024 May 30.
Addressing the challenges of suboptimal model performance and excessive parameters and operations in the optimization of energy storage power plants utilizing Graph Convolutional Network (GCN), this paper introduces a novel approach - the packet-switched graph convolutional network. Initially, a GCN extreme learning machine is established. Drawing inspiration from this solid foundation, we have innovatively crafted a group exchange graph convolution module. This module leverages group graph convolution techniques to amalgamate unique node feature information, tailored to diverse topology graph matrices based on various groupings. This innovative approach ensures that information flows freely and effectively among distinct groupings. Furthermore, we have designed a cutting-edge timing depth separation convolution module, comprising two innovative components. The first component introduces timing depth separation convolution, revolutionizing the original timing convolution module. The second component, the packet-switching graph convolutional network, revolutionizes the time sequence depth separation convolution process. It achieves this by employing 1 × 1 convolutional layers between different feature fusion packets, enabling seamless information exchange between distinct packets. Experimental results demonstrate the efficacy of the proposed model, with root mean square error (RMSE) metrics and root mean square error (MAE) metrics for single-step prediction reaching 46.08 and 26.22 at 60 min, respectively. In multi-step testing, the proposed model exhibits a 14.71 % reduction in RMSE error at the 15-min scale and a 9.29 % reduction at the 60-min scale compared to the benchmark model. This performance improvement enhances the operational efficiency and reliability of the energy storage plant, particularly under dynamic changes in the time series.
针对利用图卷积网络(GCN)优化储能电站时模型性能欠佳以及参数和运算过多的挑战,本文介绍了一种新颖方法——分组交换图卷积网络。首先,建立了一个GCN极限学习机。在此坚实基础上,我们创新地构建了一个组交换图卷积模块。该模块利用组图卷积技术融合独特的节点特征信息,这些信息是根据不同分组为多样的拓扑图矩阵量身定制的。这种创新方法确保信息在不同分组之间自由且有效地流动。此外,我们设计了一个前沿的时序深度分离卷积模块,它由两个创新组件组成。第一个组件引入了时序深度分离卷积,革新了原始的时序卷积模块。第二个组件,即分组交换图卷积网络,革新了时序深度分离卷积过程。它通过在不同特征融合分组之间采用1×1卷积层来实现这一点,从而使不同分组之间能够无缝地进行信息交换。实验结果证明了所提模型的有效性,在60分钟时单步预测的均方根误差(RMSE)指标和平均绝对误差(MAE)指标分别达到46.08和26.22。在多步测试中,与基准模型相比,所提模型在15分钟尺度下RMSE误差降低了14.71%,在60分钟尺度下降低了9.29%。这种性能提升增强了储能电站的运行效率和可靠性,特别是在时间序列动态变化的情况下。