Suppr超能文献

血清抗原组学分析揭示类风湿关节炎的诊断模型。

Serum Antigenome Profiling Reveals Diagnostic Models for Rheumatoid Arthritis.

机构信息

Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.

Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.

出版信息

Front Immunol. 2022 Apr 20;13:884462. doi: 10.3389/fimmu.2022.884462. eCollection 2022.

Abstract

OBJECTIVE

The study aimed to investigate the serum antigenomic profiling in rheumatoid arthritis (RA) and determine potential diagnostic biomarkers using label-free proteomic technology implemented with machine-learning algorithm.

METHOD

Serum antigens were captured from a cohort consisting of 60 RA patients (45 ACPA-positive RA patients and 15 ACPA-negative RA patients), together with sex- and age-matched 30 osteoarthritis (OA) patients and 30 healthy controls. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was then performed. The significantly upregulated and downregulated proteins with fold change > 1.5 ( < 0.05) were selected. Based on these differentially expressed proteins (DEPs), a machine learning model was trained and validated to classify RA, ACPA-positive RA, and ACPA-negative RA.

RESULTS

We identified 62, 71, and 49 DEPs in RA, ACPA-positive RA, and ACPA-negative RA, respectively, as compared to OA and healthy controls. Typical pathway enrichment and protein-protein interaction networks were shown among these DEPs. Three panels were constructed to classify RA, ACPA-positive RA, and ACPA-negative RA using random forest models algorithm based on the molecular signature of DEPs, whose area under curve (AUC) were calculated as 0.9949 (95% CI = 0.9792-1), 0.9913 (95% CI = 0.9653-1), and 1.0 (95% CI = 1-1).

CONCLUSION

This study illustrated the serum auto-antigen profiling of RA. Among them, three panels of antigens were identified as diagnostic biomarkers to classify RA, ACPA-positive, and ACPA-negative RA patients.

摘要

目的

本研究旨在使用基于机器学习算法的无标记蛋白质组学技术,研究类风湿关节炎(RA)患者的血清抗原组谱,并确定潜在的诊断生物标志物。

方法

从 60 例 RA 患者(45 例 ACPA 阳性 RA 患者和 15 例 ACPA 阴性 RA 患者)、30 例性别和年龄匹配的骨关节炎(OA)患者和 30 例健康对照者中捕获血清抗原。然后进行液相色谱-串联质谱(LC-MS/MS)分析。选择具有倍数变化> 1.5(<0.05)的显著上调和下调蛋白。基于这些差异表达蛋白(DEPs),训练和验证机器学习模型以分类 RA、ACPA 阳性 RA 和 ACPA 阴性 RA。

结果

与 OA 和健康对照组相比,我们分别在 RA、ACPA 阳性 RA 和 ACPA 阴性 RA 患者中鉴定出 62、71 和 49 个 DEPs。这些 DEPs 之间显示出典型的途径富集和蛋白质-蛋白质相互作用网络。基于 DEPs 的分子特征,使用随机森林模型算法构建了三个面板来分类 RA、ACPA 阳性 RA 和 ACPA 阴性 RA,其曲线下面积(AUC)分别计算为 0.9949(95%CI=0.9792-1)、0.9913(95%CI=0.9653-1)和 1.0(95%CI=1-1)。

结论

本研究阐明了 RA 的血清自身抗原谱。其中,鉴定出三个抗原面板作为诊断生物标志物,可用于分类 RA、ACPA 阳性和 ACPA 阴性 RA 患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7e4/9065411/4e585e627638/fimmu-13-884462-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验