Suppr超能文献

矫治器、标准化方法和测序深度对TempO-seq准确性的影响。

Impact of Aligner, Normalization Method, and Sequencing Depth on TempO-seq Accuracy.

作者信息

Everett Logan J, Mav Deepak, Phadke Dhiral P, Balik-Meisner Michele R, Shah Ruchir R

机构信息

Sciome LLC, Research Triangle Park, NC, USA.

出版信息

Bioinform Biol Insights. 2022 Apr 30;16:11779322221095216. doi: 10.1177/11779322221095216. eCollection 2022.

Abstract

High-throughput transcriptomics has advanced through the introduction of TempO-seq, a targeted alternative to traditional RNA-seq. TempO-seq platforms use 50 nucleotide probes, each specifically designed to target a known transcript, thus allowing for reduced sequencing depth per sample compared with RNA-seq without compromising the accuracy of results. Thus far, studies using the TempO-seq method have relied on existing tools for processing the resulting short read data. However, these tools were originally designed for other data types. While they have been used for processing of early TempO-seq data, they have not been systematically assessed for accuracy or compared to determine an optimal framework for processing and analyzing TempO-seq data. In this work, we re-analyze several publicly available TempO-seq data sets covering a range of experimental designs and use corresponding RNA-seq data sets as a gold standard to rigorously assess accuracy at multiple levels. We compare 6 aligners and 5 normalization methods across various accuracy and performance metrics. Our results demonstrate the overall robust accuracy of the TempO-seq platform, independent of data processing methods. Complex aligners and advanced normalization methods do not appear to have any general advantage over simpler methods when it comes to analyzing TempO-seq data. The reduced complexity of the sequencing space, and the fact that TempO-seq probes are all equal length, appears to reduce the need for elaborate bioinformatic or statistical methods used to address these factors in RNA-seq data.

摘要

高通量转录组学随着TempO-seq的引入而取得进展,TempO-seq是传统RNA测序的一种靶向替代方法。TempO-seq平台使用50个核苷酸的探针,每个探针都经过专门设计以靶向已知转录本,因此与RNA测序相比,每个样本的测序深度降低,同时又不影响结果的准确性。到目前为止,使用TempO-seq方法的研究一直依赖现有工具来处理产生的短读长数据。然而,这些工具最初是为其他数据类型设计的。虽然它们已被用于处理早期的TempO-seq数据,但尚未对其准确性进行系统评估,也未进行比较以确定处理和分析TempO-seq数据的最佳框架。在这项工作中,我们重新分析了几个涵盖一系列实验设计的公开可用的TempO-seq数据集,并使用相应的RNA测序数据集作为金标准,在多个层面严格评估准确性。我们在各种准确性和性能指标上比较了6种比对工具和5种标准化方法。我们的结果表明,TempO-seq平台的整体准确性很强,与数据处理方法无关。在分析TempO-seq数据时,复杂的比对工具和先进的标准化方法似乎并不比简单方法具有任何普遍优势。测序空间复杂性的降低以及TempO-seq探针长度均一这一事实,似乎减少了对用于处理RNA测序数据中这些因素的复杂生物信息学或统计方法的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfd6/9067045/b9a0919f4fc8/10.1177_11779322221095216-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验