文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Core-shell nanoparticles used in drug delivery-microfluidics: a review.

作者信息

Mahdavi Zahra, Rezvani Hamed, Keshavarz Moraveji Mostafa

机构信息

Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran

Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran.

出版信息

RSC Adv. 2020 May 13;10(31):18280-18295. doi: 10.1039/d0ra01032d. eCollection 2020 May 10.


DOI:10.1039/d0ra01032d
PMID:35517190
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9053716/
Abstract

Developments in the fields of lab-on-a-chip and microfluidic technology have benefited nanomaterial production processes due to fluid miniaturization. The ability to acquire, manage, create, and modify structures on a nanoscale is of great interest in scientific and technological fields. Recently, more attention has been paid to the production of core-shell nanomaterials because of their use in various fields, such as drug delivery. Heterostructured nanomaterials have more reliable performance than the individual core or shell materials. Nanoparticle synthesis is a complex process; therefore, various techniques exist for the production of different types of nanoparticles. Among these techniques, microfluidic methods are unique and reliable routes, which can be used to produce nanoparticles for drug delivery applications.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/33b6e2eb1fc6/d0ra01032d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/8b07dfd25c42/d0ra01032d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/94a8797ea08a/d0ra01032d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/f2c79d8e8f82/d0ra01032d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/0ce7704feab0/d0ra01032d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/c1e80af68b24/d0ra01032d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/89a139fdd32e/d0ra01032d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/576293bde7ef/d0ra01032d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/33b6e2eb1fc6/d0ra01032d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/8b07dfd25c42/d0ra01032d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/94a8797ea08a/d0ra01032d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/f2c79d8e8f82/d0ra01032d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/0ce7704feab0/d0ra01032d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/c1e80af68b24/d0ra01032d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/89a139fdd32e/d0ra01032d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/576293bde7ef/d0ra01032d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dca/9053716/33b6e2eb1fc6/d0ra01032d-f8.jpg

相似文献

[1]
Core-shell nanoparticles used in drug delivery-microfluidics: a review.

RSC Adv. 2020-5-13

[2]
Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.

Adv Drug Deliv Rev. 2013-8-8

[3]
Synthesis of nanoparticles via microfluidic devices and integrated applications.

Mikrochim Acta. 2023-6-10

[4]
Microfluidic nanomaterials: From synthesis to biomedical applications.

Biomaterials. 2022-1

[5]
Microfluidic-based nanoparticle synthesis and their potential applications.

Electrophoresis. 2022-4

[6]
Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery.

Adv Drug Deliv Rev. 2013-7-27

[7]
Advanced Microfluidic Technologies for Lipid Nano-Microsystems from Synthesis to Biological Application.

Pharmaceutics. 2022-1-7

[8]
Current developments and applications of microfluidic technology toward clinical translation of nanomedicines.

Adv Drug Deliv Rev. 2017-8-8

[9]
Core-Shell Nanoparticles for Pulmonary Drug Delivery.

Pharm Nanotechnol. 2025

[10]
Microfluidics devices for sports: A review on technology for biomedical application used in fields such as biomedicine, drug encapsulation, preparation of nanoparticles, cell targeting, analysis, diagnosis, and cell culture.

Tissue Cell. 2024-4

引用本文的文献

[1]
Advanced Targeted Drug Delivery of Bioactive Nanomaterials in the Management of Cancer.

Curr Med Chem. 2025

[2]
The utilization of nanotechnology in the female reproductive system and related disorders.

Heliyon. 2024-2-1

[3]
Freeze-drying revolution: unleashing the potential of lyophilization in advancing drug delivery systems.

Drug Deliv Transl Res. 2024-5

[4]
Microwave-Assisted Silanization of Magnetite Nanoparticles Pre-Synthesized by a 3D Microfluidic Platform.

Nanomaterials (Basel). 2023-10-20

[5]
FeO@C@MCM41-guanidine core-shell nanostructures as a powerful and recyclable nanocatalyst with high performance for synthesis of Knoevenagel reaction.

Sci Rep. 2023-6-26

[6]
Structure of polymeric nanoparticles encapsulating a drug - pamoic acid ion pair by scanning transmission electron microscopy.

Heliyon. 2023-6-9

[7]
Synthesis of nanoparticles via microfluidic devices and integrated applications.

Mikrochim Acta. 2023-6-10

[8]
Preparation and Properties of Natural Polysaccharide-Based Drug Delivery Nanoparticles.

Polymers (Basel). 2023-5-30

[9]
A flow map for core/shell microdroplet formation in the co-flow Microchannel using ternary phase-field numerical model.

Sci Rep. 2022-12-20

[10]
Microfluidics for core-shell drug carrier particles - a review.

RSC Adv. 2020-12-23

本文引用的文献

[1]
Polymeric Microneedles Integrated with Metformin-Loaded and PDA/LA-Coated Hollow Mesoporous SiO for NIR-Triggered Transdermal Delivery on Diabetic Rats.

ACS Appl Bio Mater. 2018-12-17

[2]
ZnO-DOX@ZIF-8 Core-Shell Nanoparticles for pH-Responsive Drug Delivery.

ACS Biomater Sci Eng. 2017-10-9

[3]
Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system.

Soft Matter. 2005-5-27

[4]
Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery.

Talanta. 2019-3-14

[5]
Fabricating polydopamine-coated MoSe-wrapped hollow mesoporous silica nanoplatform for controlled drug release and chemo-photothermal therapy.

Int J Nanomedicine. 2018-11-16

[6]
Biomaterials Meet Microfluidics: From Synthesis Technologies to Biological Applications.

Micromachines (Basel). 2017-8-19

[7]
Core-Shell Nanoparticles as an Efficient, Sustained, and Triggered Drug-Delivery System.

ACS Omega. 2017-10-31

[8]
Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties.

Nanoscale. 2018-7-13

[9]
Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy.

Adv Mater. 2016-12-23

[10]
3D printed microfluidic devices: enablers and barriers.

Lab Chip. 2016-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索