Department of Engineering Design, Indian Institute of Technology Madras, India.
Department of Electrical Engineering, University of Cambridge, UK.
Biomaterials. 2022 Jan;280:121247. doi: 10.1016/j.biomaterials.2021.121247. Epub 2021 Nov 11.
Microfluidic platforms gain popularity in biomedical research due to their attractive inherent features, especially in nanomaterials synthesis. This review critically evaluates the current state of the controlled synthesis of nanomaterials using microfluidic devices. We describe nanomaterials' screening in microfluidics, which is very relevant for automating the synthesis process for biomedical applications. We discuss the latest microfluidics trends to achieve noble metal, silica, biopolymer, quantum dots, iron oxide, carbon-based, rare-earth-based, and other nanomaterials with a specific size, composition, surface modification, and morphology required for particular biomedical application. Screening nanomaterials has become an essential tool to synthesize desired nanomaterials using more automated processes with high speed and repeatability, which can't be neglected in today's microfluidic technology. Moreover, we emphasize biomedical applications of nanomaterials, including imaging, targeting, therapy, and sensing. Before clinical use, nanomaterials have to be evaluated under physiological conditions, which is possible in the microfluidic system as it stimulates chemical gradients, fluid flows, and the ability to control microenvironment and partitioning multi-organs. In this review, we emphasize the clinical evaluation of nanomaterials using microfluidics which was not covered by any other reviews. In the future, the growth of new materials or modification in existing materials using microfluidics platforms and applications in a diversity of biomedical fields by utilizing all the features of microfluidic technology is expected.
微流控平台因其吸引人的固有特性而在生物医学研究中受到欢迎,尤其是在纳米材料合成方面。本综述批判性地评估了使用微流控设备控制合成纳米材料的最新进展。我们描述了在微流控中对纳米材料的筛选,这对于自动化生物医学应用的合成过程非常重要。我们讨论了最新的微流控趋势,以实现贵金属、二氧化硅、生物聚合物、量子点、氧化铁、基于碳、基于稀土的纳米材料以及其他具有特定尺寸、组成、表面修饰和形态的纳米材料,以满足特定的生物医学应用需求。筛选纳米材料已经成为使用更自动化的过程以高速和重复性合成所需纳米材料的重要工具,这在当今的微流控技术中不容忽视。此外,我们强调了纳米材料在成像、靶向、治疗和传感等生物医学应用中的重要性。在临床应用之前,必须在生理条件下评估纳米材料,这在微流控系统中是可行的,因为它可以模拟化学梯度、流体流动,并能够控制微环境和分配多器官。在本综述中,我们强调了使用微流控技术对纳米材料进行临床评估,这是其他综述没有涵盖的。未来,预计使用微流控平台对新材料的生长或现有材料的修饰,并利用微流控技术的所有特性,在各种生物医学领域中的应用将会不断增加。