Iwamura Shinichiroh, Motohashi Shota, Mukai Shin R
Hokkaido University, Faculty of Engineering N13W8, Kita-ku Sapporo 060-6828 Japan
Graduate School of Chemical Sciences and Engineering, Hokkaido University N13W8, Kita-ku Sapporo 060-6828 Japan.
RSC Adv. 2020 Oct 16;10(63):38196-38204. doi: 10.1039/d0ra07590f. eCollection 2020 Oct 15.
Titanium dioxide is a promising electrode material for lithium-ion capacitors. When using TiO as an electrode material, it is necessary to combine it with carbon at the nanometer level to improve its low electrical conductivity and low reactivity with Li. However, preparation methods of reported TiO/porous-carbon nanocomposites are generally not cost-effective, and their productivities are low. In this study, the vacuum liquid-pulse chemical vapor deposition (VLP-CVD) technique was developed to easily prepare TiO/porous-carbon nanocomposites, where TiO nanoparticles with a diameter of ∼4 nm could be homogeneously deposited inside the pores of meso- or macroporous carbons. Because the deposited TiO nanoparticles had access to effective electrically conductive paths formed by the porous-carbon substrate, they showed a high discharge capacity of ∼200 mA h g-TiO (based on TiO weight). In particular, the composite prepared from macroporous carbon showed an extremely high rate performance, where 50% of the discharge capacity was retained at a current density of 15 000 mA g when compared to that measured at 50 mA g. In addition, the composite also showed very high cyclability, where 80% of the discharge capacity was retained at the 10 000 cycle. Because the VLP-CVD technique can be performed using simple apparatus and commercially available starting materials, it can be expected to boost industrial production of TiO/porous-carbon for lithium-ion capacitors.
二氧化钛是一种很有前景的锂离子电容器电极材料。当使用TiO作为电极材料时,有必要在纳米尺度上与碳结合,以改善其低电导率以及与锂的低反应活性。然而,已报道的TiO/多孔碳纳米复合材料的制备方法通常成本效益不高,且生产率较低。在本研究中,开发了真空液体脉冲化学气相沉积(VLP-CVD)技术来轻松制备TiO/多孔碳纳米复合材料,其中直径约4 nm的TiO纳米颗粒能够均匀地沉积在介孔或大孔碳的孔内。由于沉积的TiO纳米颗粒能够接入由多孔碳基底形成的有效导电路径,它们表现出约200 mA h g-TiO(基于TiO重量)的高放电容量。特别是,由大孔碳制备的复合材料表现出极高的倍率性能,与在50 mA g下测得的放电容量相比,在15000 mA g的电流密度下仍保留50%的放电容量。此外,该复合材料还表现出非常高的循环稳定性,在10000次循环后仍保留80%的放电容量。由于VLP-CVD技术可以使用简单的设备和市售的起始材料来进行,有望推动用于锂离子电容器的TiO/多孔碳的工业化生产。