Palavicino-Maggio Caroline B, Sengupta Saheli
Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.
Department of Neurobiology, Harvard Medical School, Boston, MA, United States.
Front Behav Neurosci. 2022 Apr 18;16:836666. doi: 10.3389/fnbeh.2022.836666. eCollection 2022.
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
攻击性是一种内在特质,几乎所有物种的生物,包括人类,都会利用它来获取食物、住所和交配对象。为了在野外实现适应性最大化,生物体必须根据相同或不同的刺激来改变攻击强度。这种变化在多大程度上是由基因决定的,又在多大程度上是由外部诱导的,目前还不清楚,但很可能是两者的结合。无论来源如何,改变攻击强度的主要生理机制之一涉及神经调节。攻击强度的任何变化或差异很可能是由几种神经调节物质通过神经回路网络相互作用而产生的复杂结果。由于哺乳动物大脑的高度复杂性,在哺乳动物模型中解析特定于攻击行为的神经回路已被证明具有挑战性。在这方面,果蝇模型为攻击行为调节的回路驱动机制及其潜在的神经调节基础提供了见解。尽管形态上存在差异,但果蝇大脑在基因、神经调节系统和回路组织方面与哺乳动物大脑有着惊人的相似之处,这使得果蝇模型的研究结果对于理解人类攻击性的基本回路逻辑极具价值。本综述基于果蝇模型的研究结果,讨论了我们目前对神经调节物质如何调节攻击性的理解。我们特别关注血清素(5-HT)、多巴胺(DA)、章鱼胺(OA)、乙酰胆碱(ACTH)、性肽(SP)、速激肽(TK)、神经肽F(NPF)和果蝇速激肽(Dsk)在果蝇雄性和雌性攻击行为中的作用。