Suppr超能文献

基于神经网络的用于亚微米生物颗粒分离的声控微流系统优化

Neural Network-Based Optimization of an Acousto Microfluidic System for Submicron Bioparticle Separation.

作者信息

Talebjedi Bahram, Heydari Mohammadamin, Taatizadeh Erfan, Tasnim Nishat, Li Isaac T S, Hoorfar Mina

机构信息

School of Engineering, University of British Columbia, Kelowna, BC, Canada.

Department of Chemistry, The University of British Columbia, Kelowna, BC, Canada.

出版信息

Front Bioeng Biotechnol. 2022 Apr 19;10:878398. doi: 10.3389/fbioe.2022.878398. eCollection 2022.

Abstract

The advancement in microfluidics has provided an excellent opportunity for shifting from conventional sub-micron-sized isolation and purification methods to more robust and cost-effective lab-on-chip platforms. The acoustic-driven separation approach applies differential forces acting on target particles, guiding them towards different paths in a label-free and biocompatible manner. The main challenges in designing the acoustofluidic-based isolation platforms are minimizing the reflected radio frequency signal power to achieve the highest acoustic radiation force acting on micro/nano-sized particles and tuning the bandwidth of the acoustic resonator in an acceptable range for efficient size-based binning of particles. Due to the complexity of the physics involved in acoustic-based separations, the current existing lack in performance predictive understanding makes designing these miniature systems iterative and resource-intensive. This study introduces a unique approach for design automation of acoustofluidic devices by integrating the machine learning and multi-objective heuristic optimization approaches. First, a neural network-based prediction platform was developed to predict the resonator's frequency response according to different geometrical configurations of interdigitated transducers In the next step, the multi-objective optimization approach was executed for extracting the optimum design features for maximum possible device performance according to decision-maker criteria. The results show that the proposed methodology can significantly improve the fine-tuned IDT designs with minimum power loss and maximum working frequency range. The examination of the power loss and bandwidth on the alternation and distribution of the acoustic pressure inside the microfluidic channel was carried out by conducting a 3D finite element-based simulation. The proposed methodology improves the performance of the acoustic transducer by overcoming the constraints related to bandwidth operation, the magnitude of acoustic radiation force on particles, and the distribution of pressure acoustic inside the microchannel.

摘要

微流控技术的进步为从传统的亚微米级分离和纯化方法转向更强大且经济高效的芯片实验室平台提供了绝佳机会。声驱动分离方法利用作用于目标颗粒的不同力,以无标记且生物相容的方式引导它们走向不同路径。设计基于声流控的分离平台的主要挑战在于将反射射频信号功率降至最低,以实现作用于微/纳米级颗粒的最大声辐射力,并将声谐振器的带宽调整到可接受范围内,以便对颗粒进行基于尺寸的高效分类。由于基于声学的分离所涉及物理过程的复杂性,目前在性能预测理解方面的不足使得设计这些微型系统具有迭代性且资源密集。本研究通过整合机器学习和多目标启发式优化方法,引入了一种用于声流控设备设计自动化的独特方法。首先,开发了一个基于神经网络的预测平台,根据叉指换能器的不同几何配置来预测谐振器的频率响应。下一步,执行多目标优化方法,根据决策者标准提取最佳设计特征,以实现尽可能高的设备性能。结果表明,所提出的方法能够显著改进经过微调的叉指换能器设计,使其具有最小的功率损耗和最大的工作频率范围。通过基于三维有限元的模拟,研究了微流控通道内声压的交替和分布对功率损耗和带宽的影响。所提出的方法通过克服与带宽操作、颗粒上的声辐射力大小以及微通道内声压分布相关的限制,提高了声换能器的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44ac/9061962/ff63fda3b104/fbioe-10-878398-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验