Suppr超能文献

基于密度和力学特性的声学生物细胞分离。

Acoustic Cell Separation Based on Density and Mechanical Properties.

机构信息

Department of Chemical Engineering, The Pennsylvania State University, University Park, State College, PA 16802.

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, State College, PA 16802.

出版信息

J Biomech Eng. 2020 Mar 1;142(3):0310051-9. doi: 10.1115/1.4046180.

Abstract

Density and mechanical properties (e.g., compressibility or bulk modulus) are important cellular biophysical markers. As such, developing a method to separate cells directly based on these properties can benefit various applications including biological research, diagnosis, prognosis, and therapeutics. As a potential solution, surface acoustic wave (SAW)-based cell separation has demonstrated advantages in terms of biocompatibility and compact device size. However, most SAW-reliant cell separations are achieved using an entangled effect of density, various mechanical properties, and size. In this work, we demonstrate SAW-based separation of cells/particles based on their density and compressibility, irrespective of their sizes, by manipulating the acoustic properties of the fluidic medium. Using our platform, SAW-based separation is achieved by varying the dimensions of the microfluidic channels, the wavelengths of acoustic signals, and the properties of the fluid media. Our method was applied to separate paraformaldehyde-treated and fresh Hela cells based on differences in mechanical properties; a recovery rate of 85% for fixed cells was achieved. It was also applied to separate red blood cells (RBCs) and white blood cells (WBCs) which have different densities. A recovery rate of 80.5% for WBCs was achieved.

摘要

密度和机械性能(例如,可压缩性或体积弹性模量)是重要的细胞生物物理标志物。因此,开发一种直接基于这些特性分离细胞的方法可以有益于各种应用,包括生物研究、诊断、预后和治疗。作为一种潜在的解决方案,基于表面声波(SAW)的细胞分离在生物相容性和设备紧凑尺寸方面具有优势。然而,大多数基于 SAW 的细胞分离都是通过密度、各种机械性能和大小的纠缠效应来实现的。在这项工作中,我们通过操纵流体制动的声学特性,证明了基于密度和可压缩性的 SAW 细胞/颗粒分离,而与它们的大小无关。使用我们的平台,通过改变微流道的尺寸、声信号的波长和流体介质的性质来实现基于 SAW 的分离。我们的方法应用于基于机械性能差异分离多聚甲醛处理和新鲜的 Hela 细胞,固定细胞的回收率达到 85%。它还应用于分离密度不同的红细胞(RBC)和白细胞(WBC),WBC 的回收率达到 80.5%。

相似文献

7
Cell separation using tilted-angle standing surface acoustic waves.使用倾斜角驻波表面声波进行细胞分离。
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):12992-7. doi: 10.1073/pnas.1413325111. Epub 2014 Aug 25.

引用本文的文献

1
Acoustofluidic Actuation of Living Cells.活细胞的声流体驱动
Micromachines (Basel). 2024 Mar 29;15(4):466. doi: 10.3390/mi15040466.
2
Acoustofluidic separation of prolate and spherical micro-objects.长圆形和球形微物体的声流分离
Microsyst Nanoeng. 2024 Jan 11;10:6. doi: 10.1038/s41378-023-00636-7. eCollection 2024.
5
Recent advances in acoustofluidic separation technology in biology.生物声学流体分离技术的最新进展。
Microsyst Nanoeng. 2022 Sep 1;8:94. doi: 10.1038/s41378-022-00435-6. eCollection 2022.

本文引用的文献

1
Acoustofluidic methods in cell analysis.细胞分析中的声流体方法。
Trends Analyt Chem. 2019 Aug;117:280-290. doi: 10.1016/j.trac.2019.06.034. Epub 2019 Jul 13.
2
Acoustofluidic separation of cells and particles.细胞和颗粒的声流体分离
Microsyst Nanoeng. 2019 Jun 3;5:32. doi: 10.1038/s41378-019-0064-3. eCollection 2019.
4
Applications of Acoustofluidics in Bioanalytical Chemistry.声流控技术在生物分析化学中的应用。
Anal Chem. 2019 Jan 2;91(1):757-767. doi: 10.1021/acs.analchem.8b03786. Epub 2018 Dec 18.
5
Acoustic tweezers for the life sciences.用于生命科学的声镊。
Nat Methods. 2018 Dec;15(12):1021-1028. doi: 10.1038/s41592-018-0222-9. Epub 2018 Nov 26.
10
Squeezing for Life - Properties of Red Blood Cell Deformability.为生命而挤压——红细胞变形性的特性
Front Physiol. 2018 Jun 1;9:656. doi: 10.3389/fphys.2018.00656. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验