Suppr超能文献

使用体声波和机器学习对微流控芯片内的粒子进行控制操作和主动分选。

Controlled Manipulation and Active Sorting of Particles Inside Microfluidic Chips Using Bulk Acoustic Waves and Machine Learning.

机构信息

Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.

出版信息

Langmuir. 2021 Apr 13;37(14):4192-4199. doi: 10.1021/acs.langmuir.1c00063. Epub 2021 Apr 2.

Abstract

Manipulation of cells, droplets, and particles via ultrasound within microfluidic chips is a rapidly growing field, with applications in cell and particle sorting, blood fractionation, droplet transport, and enrichment of rare or cancerous cells, among others. However, current methods with a single ultrasonic transducer offer limited control of the position of single particles. In this paper, we demonstrate closed-loop two-dimensional manipulation of particles inside closed-channel microfluidic chips, by controlling the frequency of a single ultrasound transducer, based on machine-vision-measured positions of the particles. For the control task, we propose using algorithms derived from the family of multi-armed bandit algorithms. We show that these algorithms can achieve controlled manipulation with no prior information on the acoustic field shapes. The method learns as it goes: there is no need to restart the experiment at any point. Starting with no knowledge of the field shapes, the algorithms can (eventually) move a particle from one position inside the chamber to another. This makes the method very robust to changes in chip and particle properties. We demonstrate that the method can be used to manipulate a single particle, three particles simultaneously, and also a single particle in the presence of a bubble in the chip. Finally, we demonstrate the practical applications of this method in active sorting of particles, by guiding each particle to exit the chip through one of three different outlets at will. Because the method requires no model or calibration, the work paves the way toward the acoustic manipulation of microparticles inside unstructured environments.

摘要

在微流控芯片中通过超声波操纵细胞、液滴和颗粒是一个快速发展的领域,其应用包括细胞和颗粒分选、血液分离、液滴传输以及稀有或癌细胞的富集等。然而,目前使用单个超声换能器的方法对单个颗粒的位置控制有限。在本文中,我们展示了通过基于机器视觉测量的颗粒位置来控制单个超声换能器的频率,从而在封闭通道微流控芯片内实现颗粒的闭环二维操纵。对于控制任务,我们提出使用多臂赌博机算法家族衍生的算法。我们表明,这些算法可以在没有声场形状先验信息的情况下实现受控操作。该方法边做边学:无需在任何时候重新启动实验。从不知道场形状开始,算法可以(最终)将一个颗粒从腔室内的一个位置移动到另一个位置。这使得该方法对芯片和颗粒特性的变化非常稳健。我们证明了该方法可用于操纵单个颗粒、三个颗粒同时操作,以及在芯片中有气泡的情况下也可操作单个颗粒。最后,我们通过引导每个颗粒通过三个不同出口中的任意一个随意离开芯片,展示了该方法在主动粒子分选中的实际应用。由于该方法不需要模型或校准,因此为在非结构化环境中对微颗粒进行声操纵铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f6f/8154862/97f03404c6ca/la1c00063_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验