Suppr超能文献

通过等离子体驱动的小分子有机化合物表面催化脱卤偶联反应形成薄膜。

Film formation from plasma-enabled surface-catalyzed dehalogenative coupling of a small organic molecule.

作者信息

Hartl Hugo, Guo Yanru, Ostrikov Ken, Xian Yubin, Zheng Jie, Li Xingguo, Fairfull-Smith Kathryn E, MacLeod Jennifer

机构信息

School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) 2 George Street Brisbane QLD Australia 4000

Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China.

出版信息

RSC Adv. 2019 Jan 21;9(5):2848-2856. doi: 10.1039/c8ra08920e. eCollection 2019 Jan 18.

Abstract

This work demonstrates a new pathway to the direct on-surface fabrication of surface coatings by showing that application of a plasma can lead to dehalogenative coupling of small aromatic molecules at a catalytic surface. Specifically, we show that a room temperature, atmospheric pressure plasma can be used to fabricate a coating through a surface-confined dehalogenation reaction. Plasma treatments were performed using a dielectric barrier discharge (DBD) technique under pure nitrogen with a variety of power levels and durations. Samples were analysed by optical and helium ion microscopy (HIM), X-ray photoelectron spectroscopy (XPS), optical profilometry, and contact angle measurement. By varying the plasma parameters we could control the chemistry, morphology and roughness of the film. Surface wettability also varied with the plasma parameters, with high-dose plasmas leading to a hydrophobic surface with water contact angles up to 130°.

摘要

这项工作展示了一种通过表面涂层直接在表面制造的新途径,表明施加等离子体可导致小芳香族分子在催化表面发生脱卤偶联反应。具体而言,我们表明室温、大气压等离子体可用于通过表面受限的脱卤反应制造涂层。使用介质阻挡放电(DBD)技术在纯氮气下以各种功率水平和持续时间进行等离子体处理。通过光学显微镜和氦离子显微镜(HIM)、X射线光电子能谱(XPS)、光学轮廓仪和接触角测量对样品进行分析。通过改变等离子体参数,我们可以控制薄膜的化学性质、形态和粗糙度。表面润湿性也随等离子体参数而变化,高剂量等离子体导致疏水表面,水接触角高达130°。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验