Suppr超能文献

基于机器学习模型的膀胱癌中视网膜母细胞瘤-1基因突变分类

Classification of retinoblastoma-1 gene mutation with machine learning-based models in bladder cancer.

作者信息

İnce Okan, Yıldız Hülya, Kisbet Tanju, Ertürk Şükrü Mehmet, Önder Hakan

机构信息

Health Sciences University Prof. Dr. Cemil Tascioglu City Hospital, Department of Radiology, Turkey.

Istanbul University Istanbul Medical Faculty, Department of Radiology, Turkey.

出版信息

Heliyon. 2022 Apr 21;8(4):e09311. doi: 10.1016/j.heliyon.2022.e09311. eCollection 2022 Apr.

Abstract

PURPOSE

This study aims to evaluate the potential of machine learning algorithms built with radiomics features from computed tomography urography (CTU) images that classify RB1 gene mutation status in bladder cancer.

METHOD

The study enrolled CTU images of 18 patients with and 54 without RB1 mutation from a public database. Image and data preprocessing were performed after data augmentation. Feature selection steps were consisted of filter and wrapper methods. Pearson's correlation analysis was the filter, and a wrapper-based sequential feature selection algorithm was the wrapper. Models with XGBoost, Random Forest (RF), and k-Nearest Neighbors (kNN) algorithms were developed. Performance metrics of the models were calculated. Models' performances were compared by using Friedman's test.

RESULTS

8 features were selected from 851 total extracted features. Accuracy, sensitivity, specificity, precision, recall, F1 measure and AUC were 84%, 80%, 88%, 86%, 80%, 0.83 and 0.84, for XGBoost; 72%, 80%, 65%, 67%, 80%, 0.73 and 0.72 for RF; 66%, 53%, 76%, 67%, 53%, 0.60 and 0.65 for kNN, respectively. XGBoost model had outperformed kNN model in Friedman's test (p = 0.006).

CONCLUSIONS

Machine learning algorithms with radiomics features from CTU images show promising results in classifying bladder cancer by RB1 mutation status non-invasively.

摘要

目的

本研究旨在评估利用计算机断层扫描尿路造影(CTU)图像的放射组学特征构建的机器学习算法对膀胱癌中RB1基因突变状态进行分类的潜力。

方法

该研究从一个公共数据库中纳入了18例有RB1突变和54例无RB1突变患者的CTU图像。在数据增强后进行图像和数据预处理。特征选择步骤由过滤法和包装法组成。Pearson相关分析为过滤法,基于包装法的序列特征选择算法为包装法。开发了采用XGBoost、随机森林(RF)和k近邻(kNN)算法的模型。计算模型的性能指标。使用Friedman检验比较模型的性能。

结果

从总共提取的851个特征中选择了8个特征。XGBoost模型的准确率、灵敏度、特异度、精准度、召回率、F1值和AUC分别为84%、80%、88%、86%、80%、0.83和0.84;RF模型分别为72%、80%、65%、67%、80%、0.73和0.72;kNN模型分别为66%、53%、76%、67%、53%、0.60和0.65。在Friedman检验中,XGBoost模型优于kNN模型(p = 0.006)。

结论

具有CTU图像放射组学特征的机器学习算法在通过RB1突变状态对膀胱癌进行无创分类方面显示出有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b59/9061624/eb323b823470/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验