Karade Swapnil S, Nimbalkar Ajaysing S, Eum Jeong-Hyun, Kim Hansung
Electrochemical Energy Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul-03722 Republic of Korea
Korea Research Institute of Chemical Technology Yusong-gu Republic of Korea.
RSC Adv. 2020 Nov 4;10(66):40092-40105. doi: 10.1039/d0ra06952c. eCollection 2020 Nov 2.
In the present study, we have developed a composite electrode of MSNT using a simple and scalable two-step scheme to synthesize a composite electrode material comprising MoSe/multiwalled carbon nanotubes (MoSe/MWCNTs) for supercapacitor applications. First, a MWCNT thin film was deposited on a stainless steel substrate by using a "dip and dry" coating technique. Subsequently, MoSe was deposited onto the MWCNT thin film using the successive ionic layer adsorption and reaction method. The lichen-like growth of MoSe on the MWCNT network provided dual charge storage and an effective ion transfer path. The composite electrode of MSNT has been studied systematically with different electrolytes and concentrations of electrolyte. As a result, the MoSe/MWCNT (MSNT) electrode exhibited excellent electrochemical properties such as a specific capacity of 192 mA h g and a capacitance retention of 88% after 2000 cycles in 1 M LiCl electrolyte. The results demonstrated the huge potential of the MSNT composite electrode for practical application in supercapacitors. The aqueous symmetric cell fabricated using the MSNT composite as both the anode and cathode showed an energy density of 17.9 W h kg. Additionally, the energy density improved by designing an asymmetric device of MSNT//MnO and notably, it reveals two-fold improvement in the energy density compared to a symmetric MSNT cell. The MSNT//MnO-based asymmetric cell exhibited a maximum specific capacitance of 112 F g with a high energy density of 35.6 W h kg.
在本研究中,我们开发了一种MSNT复合电极,采用简单且可扩展的两步方案合成了一种用于超级电容器应用的复合电极材料,该材料由MoSe/多壁碳纳米管(MoSe/MWCNTs)组成。首先,通过“浸涂和干燥”涂层技术在不锈钢基板上沉积MWCNT薄膜。随后,使用连续离子层吸附和反应方法将MoSe沉积到MWCNT薄膜上。MoSe在MWCNT网络上呈地衣状生长,提供了双电荷存储和有效的离子转移路径。我们系统地研究了MSNT复合电极在不同电解质和电解质浓度下的性能。结果表明,在1 M LiCl电解质中,MoSe/MWCNT(MSNT)电极表现出优异的电化学性能,如比容量为192 mA h/g,在2000次循环后电容保持率为88%。结果证明了MSNT复合电极在超级电容器实际应用中的巨大潜力。使用MSNT复合材料作为阳极和阴极制造的水系对称电池的能量密度为17.9 W h/kg。此外,通过设计MSNT//MnO不对称器件,能量密度得到了提高,值得注意的是,与对称MSNT电池相比,其能量密度提高了两倍。基于MSNT//MnO的不对称电池表现出最大比电容为112 F/g,高能量密度为35.6 W h/kg。