Department of Chemistry, Tunghai University , No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan.
ACS Appl Mater Interfaces. 2013 Nov 27;5(22):12168-74. doi: 10.1021/am404196s. Epub 2013 Nov 18.
The Ni3S2 nanoparticles with the diameters ranging from 10 to 80 nm are grown on the backbone of conductive multiwalled carbon nanotubes (MWCNTs) using a glucose-assisted hydrothermal method. It is found that the Ni3S2 nanoparticles deposited on MWCNTs disassemble into smaller components after the composite electrode is activated by the consecutive cyclic voltammetry scan in a 2 M KOH solution. Therefore, the active surface area of the Ni3S2 nanoparticles is increased, which further enhances the capacitive performance of the composite electrode. Because the synergistic effect of the Ni3S2 nanoparticles and MWCNTs on the capacitive performance of the composite electrode is pronounced, the composite electrode shows a high specific capacitance of 800 F/g and great cycling stability at a current density of 3.2 A/g. To examine the capacitive performance of the composite electrode in a full-cell configuration, an asymmetric supercapacitor device was fabricated by using the composite of Ni3S2 and MWCNTs as the cathode and activated carbon as the anode. The fabricated device can be operated reversibly between 0 and 1.6 V, and obtain a high specific capacitance of 55.8 F/g at 1 A/g, which delivers a maximum energy density of 19.8 Wh/kg at a power density of 798 W/kg. Furthermore, the asymmetric supercapacitor shows great stability based on the fact that the device retains 90% of its initial capacitance after a consecutive 5000 cycles of galvanostatic charge-discharge performed at a current density of 4 A/g.
采用葡萄糖辅助水热法,在导电多壁碳纳米管 (MWCNT) 的骨架上生长出直径在 10 至 80nm 之间的 Ni3S2 纳米颗粒。研究发现,在 2MKOH 溶液中,经过连续循环伏安扫描激活后,沉积在 MWCNT 上的 Ni3S2 纳米颗粒会分解成更小的组分。因此,Ni3S2 纳米颗粒的活性表面积增加,从而进一步提高了复合电极的电容性能。由于 Ni3S2 纳米颗粒和 MWCNT 对复合电极电容性能的协同效应显著,因此复合电极在 3.2A/g 的电流密度下表现出 800F/g 的高比电容和出色的循环稳定性。为了检验复合电极在全电池结构中的电容性能,通过将 Ni3S2 和 MWCNT 的复合材料用作阴极,将活性炭用作阳极,制备了一种非对称超级电容器器件。所制备的器件可在 0 至 1.6V 之间可逆工作,在 1A/g 的电流密度下可获得 55.8F/g 的比电容,在 798W/kg 的功率密度下可获得 19.8Wh/kg 的最大能量密度。此外,该非对称超级电容器具有出色的稳定性,在 4A/g 的电流密度下进行连续 5000 次恒流充放电循环后,其电容保持初始值的 90%。