Suppr超能文献

简便的化学方法制备多壁碳纳米管/硫化汞纳米复合材料:高性能超级电容器电极。

Facile chemical route for multiwalled carbon nanotube/mercury sulfide nanocomposite: High performance supercapacitive electrode.

机构信息

Department of Applied Physics, Laxminarayan Institute of Technology, RTM Nagpur University, Nagpur 440033, Maharashtra, India.

Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010, Maharashtra, India.

出版信息

J Colloid Interface Sci. 2018 Mar 15;514:740-749. doi: 10.1016/j.jcis.2017.12.068. Epub 2017 Dec 27.

Abstract

Supercapacitors as one of the most important energy storage devices have been receiving worldwide attention due to their high capacitance, power density, long cycle life, and rapid charge/discharge rates as compared to conventional electrolytic capacitors and rechargeable batteries. A nanocomposite has been prepared using mercury sulfide (HgS) and multiwalled carbon nanotubes (MWCNTs) via novel, simple, and low-cost 'dip and dry' process followed by successive ionic layer adsorption and reaction (SILAR) method. The association of HgS nanoparticles with high surface area reinforced MWCNTs nanonetwork boosts the electrochemical supercapacitive performance of nanocomposite compared to bare HgS and MWCNTs. This nanocomposite yields excellent specific capacitance of 946.43 F/g at scan rate of 2 mV/s and an outstanding rate capability of 93% retention over 4000 cycles with decent charge-discharge cycles. Moreover, the electrode exhibits maximum specific energy and power densities of 42.97 Wh/kg and 1.60 kW/kg, respectively. The promising capabilities of formed nanocomposite can explore the opportunities as alternative electrode material for energy storage applications.

摘要

超级电容器作为最重要的储能设备之一,由于其比传统电解电容器和可充电电池更高的电容、功率密度、长循环寿命和快速充放电率,受到了全球的关注。通过新颖、简单且低成本的“浸涂和干燥”工艺,随后是连续离子层吸附和反应(SILAR)方法,使用硫化汞(HgS)和多壁碳纳米管(MWCNTs)制备了纳米复合材料。HgS 纳米粒子与高表面积增强的 MWCNTs 纳米网络的结合,与裸 HgS 和 MWCNTs 相比,提高了纳米复合材料的电化学超级电容器性能。该纳米复合材料在扫描速率为 2 mV/s 时表现出优异的比电容为 946.43 F/g,在 4000 次循环中具有出色的倍率性能,保留率为 93%,具有良好的充放电循环。此外,该电极表现出最大的比能量和比功率密度分别为 42.97 Wh/kg 和 1.60 kW/kg。形成的纳米复合材料的有前途的性能可以为储能应用探索替代电极材料的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验