Suppr超能文献

用于染料敏化太阳能电池的三维石墨烯网络及基于还原氧化石墨烯的对电极。

Three-dimensional graphene networks and RGO-based counter electrode for DSSCs.

作者信息

Tang Bo, Yu Haogang, Huang Weiqiu, Sun Yunfei, Li Xufei, Li Sen, Ma Tingting

机构信息

Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology, School of Petroleum Engineering, Changzhou University Changzhou 213016 People's Republic of China

College of Electronic and Information Engineering, Suzhou University of Sciences and Technology Suzhou Jiangsu 215009 People's Republic of China.

出版信息

RSC Adv. 2019 May 20;9(28):15678-15685. doi: 10.1039/c9ra02792k.

Abstract

Graphene is considered to be a potential replacement for the traditional Pt counter electrode (CE) in dye-sensitized solar cells (DSSCs). Besides a high electron transport ability, a close contact between the CE and electrolyte is crucial to its outstanding catalytic activity for the I /I redox reaction. In this study, reduced graphene oxide (RGO) and three-dimensional graphene networks (3DGNs) were used to fabricate the CE, and the graphene-based CE endowed the resulting DSSC with excellent photovoltaic performance features. The high quality and continuous structure of the 3DGNs provided a channel amenable to fast transport of electrons, while the RGO afforded a close contact at the interface between the graphene basal plane and electrolyte. The obtained energy conversion efficiency () was closely related to the mass fraction and reduction degree of the RGO that was used. Corresponding optimization yielded, for the DSSCs based on the 3DGN-RGO CE, a value of as high as 9.79%, comparable to that of the device using a Pt CE and hence implying promising prospects for the as-prepared CE.

摘要

石墨烯被认为是染料敏化太阳能电池(DSSC)中传统铂对电极(CE)的潜在替代品。除了具有高电子传输能力外,CE与电解质之间的紧密接触对于其对I⁻/I⁻⁻氧化还原反应的出色催化活性至关重要。在本研究中,还原氧化石墨烯(RGO)和三维石墨烯网络(3DGNs)被用于制备CE,基于石墨烯的CE赋予了所得DSSC优异的光伏性能。3DGNs的高质量和连续结构提供了一个有利于电子快速传输的通道,而RGO在石墨烯基面与电解质之间的界面处提供了紧密接触。获得的能量转换效率()与所使用的RGO的质量分数和还原程度密切相关。相应的优化使得基于3DGN-RGO CE的DSSC的能量转换效率值高达9.79%,与使用铂CE的器件相当,因此意味着所制备的CE具有广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3ea/9064301/a47eb464bcf0/c9ra02792k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验