Suppr超能文献

机器学习在个性化肺癌复发和生存预测中的应用。

Machine learning application in personalised lung cancer recurrence and survivability prediction.

作者信息

Yang Yang, Xu Li, Sun Liangdong, Zhang Peng, Farid Suzanne S

机构信息

Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK.

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200043, China.

出版信息

Comput Struct Biotechnol J. 2022 Apr 4;20:1811-1820. doi: 10.1016/j.csbj.2022.03.035. eCollection 2022.

Abstract

Machine learning is an important artificial intelligence technique that is widely applied in cancer diagnosis and detection. More recently, with the rise of personalised and precision medicine, there is a growing trend towards machine learning applications for prognosis prediction. However, to date, building reliable prediction models of cancer outcomes in everyday clinical practice is still a hurdle. In this work, we integrate genomic, clinical and demographic data of lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) patients from The Cancer Genome Atlas (TCGA) and introduce copy number variation (CNV) and mutation information of 15 selected genes to generate predictive models for recurrence and survivability. We compare the accuracy and benefits of three well-established machine learning algorithms: decision tree methods, neural networks and support vector machines. Although the accuracy of predictive models using the decision tree method has no significant advantage, the tree models reveal the most important predictors among genomic information (e.g. KRAS, EGFR, TP53), clinical status (e.g. TNM stage and radiotherapy) and demographics (e.g. age and gender) and how they influence the prediction of recurrence and survivability for both early stage LUAD and LUSC. The machine learning models have the potential to help clinicians to make personalised decisions on aspects such as follow-up timeline and to assist with personalised planning of future social care needs.

摘要

机器学习是一种重要的人工智能技术,在癌症诊断和检测中得到广泛应用。最近,随着个性化和精准医学的兴起,机器学习在预后预测方面的应用呈增长趋势。然而,迄今为止,在日常临床实践中建立可靠的癌症预后预测模型仍然是一个障碍。在这项工作中,我们整合了来自癌症基因组图谱(TCGA)的肺腺癌(LUAD)和肺鳞状细胞癌(LUSC)患者的基因组、临床和人口统计学数据,并引入了15个选定基因的拷贝数变异(CNV)和突变信息,以生成复发和生存预测模型。我们比较了三种成熟的机器学习算法的准确性和优势:决策树方法、神经网络和支持向量机。虽然使用决策树方法的预测模型的准确性没有显著优势,但树模型揭示了基因组信息(如KRAS、EGFR、TP)、临床状态(如TNM分期和放疗)和人口统计学(如年龄和性别)中最重要的预测因素,以及它们如何影响早期LUAD和LUSC的复发和生存预测。机器学习模型有可能帮助临床医生在随访时间等方面做出个性化决策,并协助进行未来社会护理需求的个性化规划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7c/9043969/3bc6be7839cf/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验