Zhang Fei, Han Hui, Li Minglin, Tian Tian, Zhang Guilei, Yang Zhenrong, Guo Feng, Li Maomao, Wang Yuting, Wang Jiahe, Liu Ying
Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Science and Technology Research Center of China Customs, Beijing, China.
Front Microbiol. 2025 Jan 8;15:1510026. doi: 10.3389/fmicb.2024.1510026. eCollection 2024.
The mortality rate associated with (MTB) has seen a significant rise in regions heavily affected by the disease over the past few decades. The traditional methods for diagnosing and differentiating tuberculosis (TB) remain thorny issues, particularly in areas with a high TB epidemic and inadequate resources. Processing numerous images can be time-consuming and tedious. Therefore, there is a need for automatic segmentation and classification technologies based on lung computed tomography (CT) scans to expedite and enhance the diagnosis of TB, enabling the rapid and secure identification of the condition. Deep learning (DL) offers a promising solution for automatically segmenting and classifying lung CT scans, expediting and enhancing TB diagnosis.
This review evaluates the diagnostic accuracy of DL modalities for diagnosing pulmonary tuberculosis (PTB) after searching the PubMed and Web of Science databases using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines.
Seven articles were found and included in the review. While DL has been widely used and achieved great success in CT-based PTB diagnosis, there are still challenges to be addressed and opportunities to be explored, including data scarcity, model generalization, interpretability, and ethical concerns. Addressing these challenges requires data augmentation, interpretable models, moral frameworks, and clinical validation.
Further research should focus on developing robust and generalizable DL models, enhancing model interpretability, establishing ethical guidelines, and conducting clinical validation studies. DL holds great promise for transforming PTB diagnosis and improving patient outcomes.
在过去几十年里,受结核病(MTB)影响严重的地区,其相关死亡率显著上升。传统的结核病(TB)诊断和鉴别方法仍然是棘手问题,尤其是在结核病流行率高且资源不足的地区。处理大量图像既耗时又繁琐。因此,需要基于肺部计算机断层扫描(CT)的自动分割和分类技术来加快并提高结核病诊断水平,实现对病情的快速准确识别。深度学习(DL)为肺部CT扫描的自动分割和分类提供了一种很有前景的解决方案,可加快并提高结核病诊断效率。
本综述按照系统评价和Meta分析的首选报告项目(PRISMA)指南,检索了PubMed和Web of Science数据库,评估了深度学习模式对肺结核(PTB)的诊断准确性。
共检索到7篇文章并纳入本综述。虽然深度学习已在基于CT的肺结核诊断中得到广泛应用并取得了巨大成功,但仍有一些挑战需要应对,也有一些机遇有待探索,包括数据稀缺、模型泛化、可解释性和伦理问题。应对这些挑战需要进行数据增强、建立可解释模型、构建道德框架并开展临床验证。
未来的研究应聚焦于开发强大且可泛化的深度学习模型,提高模型的可解释性,制定伦理准则,并开展临床验证研究。深度学习在改变肺结核诊断方式和改善患者治疗结果方面具有巨大潜力。