R Daniel Josée, McCarthy Lauren A, Ringe Emilie, Boudreau Denis
Département de Chimie et Centre D'optique, Photonique et Laser (COPL), Université Laval Québec (QC) G1V 0A6 Canada
Department of Chemistry, Rice University Houston Texas 77005 USA.
RSC Adv. 2019 Jan 2;9(1):389-396. doi: 10.1039/c8ra09364d. eCollection 2018 Dec 19.
Hollow noble metal nanoparticles are of growing interest due to their localized surface plasmon resonance (LSPR) tunability. A popular synthetic approach is galvanic replacement which can be coupled with a co-reducer. Here, we describe the control over morphology, and therefore over plasmonic properties including energy, bandwidth, extinction and scattering intensity, offered by co-reduction galvanic replacement. This study indicates that whereas the variation of atomic stoichiometry using the co-reduction method described in this work offers a rather modest tuning range of LSPR energy when compared to traditional galvanic replacement, it nevertheless has a profound effect on shell thickness, which imparts a degree of control over scattering intensity and sensitivity to changes in the dielectric constant of the surrounding environment. Therefore, in this context particle size and gold content become two design parameters that can be used to independently tune LSPR energy and intensity.
中空贵金属纳米颗粒因其局域表面等离子体共振(LSPR)的可调性而越来越受到关注。一种常见的合成方法是可与共还原剂结合使用的电化学生置换法。在此,我们描述了通过共还原电化学生置换法对形态的控制,进而对包括能量、带宽、消光和散射强度在内的等离子体特性的控制。这项研究表明,尽管与传统的电化学生置换法相比,使用本工作中描述的共还原方法改变原子化学计量比只能提供相当有限的LSPR能量调谐范围,但它对壳层厚度仍有深远影响,这赋予了对散射强度以及对周围环境介电常数变化的敏感度的一定程度的控制。因此,在这种情况下,粒径和金含量成为两个可用于独立调节LSPR能量和强度的设计参数。