Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China and National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
J Mater Chem B. 2020 Jul 1;8(25):5491-5499. doi: 10.1039/d0tb00748j.
We present a facile organic phase synthesis method for producing multi-branched gold nanocrystals (nanostars) with a broad localized surface plasmon resonance (LSPR) across near-infrared (NIR) to short-wave infrared (SWIR) wavelengths. In this approach, galvanic replacement of copper by gold, in seed particles produced in situ, initiates growth of multi-branched structures. The method enables broad tuning of the LSPR energy by manipulating the branch length, with peak LSPR absorbance tuned from 850 to 1880 nm, reaching SWIR wavelengths covering the second and third optical transparency windows in biological media, rarely achieved with noble metal plasmonic nanostructures. After a ligand-exchange process, the gold nanostars readily disperse in water while retaining their LSPR absorbance. The multi-branched Au nanocrystals (NCs) exhibit exceptionally high photothermal transduction efficiency, exceeding that of Au nanorods and nanoparticles, to which we make direct comparisons here. At the same time, their synthesis is much more straightforward than hollow structures like nanocages, nanoshells, and nanomatryoshkas that can also exhibit high photothermal efficiency at NIR wavelengths. In vitro photothermal heating of multi-branched Au NCs in the presence of human cervical cancer cells causes effective cell ablation after 10 min laser irradiation. Cell viability assays demonstrate that the NCs are biocompatible at doses required for photothermal therapy. These results suggest that the multi-branched Au NCs can serve as a new type of photothermal therapy agent and in other applications in which strong NIR to SWIR absorbers are needed.
我们提出了一种简便的有机相合成方法,用于生产具有广泛局域表面等离子体共振(LSPR)的多分支金纳米晶体(纳米星),其 LSPR 横跨近红外(NIR)到短波红外(SWIR)波长。在这种方法中,通过在原位产生的种子颗粒中进行的电置换反应,引发了多分支结构的生长。通过操纵支链长度,可以广泛调节 LSPR 能量,峰值 LSPR 吸收率从 850nm 调谐到 1880nm,达到 SWIR 波长,涵盖生物介质中的第二和第三光学透明窗口,这很少用贵金属等离子体纳米结构实现。经过配体交换过程后,金纳米星在保留其 LSPR 吸收率的情况下容易分散在水中。多分支 Au 纳米晶体(NCs)表现出异常高的光热转换效率,超过 Au 纳米棒和纳米颗粒,我们在这里进行了直接比较。与此同时,与能够在 NIR 波长下表现出高光热效率的空心结构(如纳米笼、纳米壳和纳米套娃)相比,其合成要简单得多。在存在人宫颈癌细胞的情况下,多分支 Au NCs 的体外光热加热在 10 分钟激光照射后导致有效细胞消融。细胞活力测定表明,NCs 在光热治疗所需剂量下具有生物相容性。这些结果表明,多分支 Au NCs 可以作为一种新型光热治疗剂,以及在其他需要强 NIR 到 SWIR 吸收剂的应用中使用。