Suppr超能文献

预测多发性硬化症患者的疾病活动度:Mavenclad 试验中的可解释机器学习方法。

Predicting disease activity in patients with multiple sclerosis: An explainable machine-learning approach in the Mavenclad trials.

机构信息

Merck Institute for Pharmacometrics, Merck Serono S.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland.

Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2022 Jul;11(7):843-853. doi: 10.1002/psp4.12796. Epub 2022 May 9.

Abstract

Multiple sclerosis (MS) is among the most common autoimmune disabling neurological conditions of young adults and affects more than 2.3 million people worldwide. Predicting future disease activity in patients with MS based on their pathophysiology and current treatment is pivotal to orientate future treatment. In this respect, we used machine learning to predict disease activity status in patients with MS and identify the most predictive covariates of this activity. The analysis is conducted on a pooled population of 1935 patients enrolled in three cladribine tablets clinical trials with different outcomes: relapsing-remitting MS (from CLARITY and CLARITY-Extension trials) and patients experiencing a first demyelinating event (from the ORACLE-MS trial). We applied gradient-boosting (from XgBoost library) and Shapley Additive Explanations (SHAP) methods to identify patients' covariates that predict disease activity 3 and 6 months before their clinical observation, including patient baseline characteristics, longitudinal magnetic resonance imaging readouts, and neurological and laboratory measures. The most predictive covariates for early identification of disease activity in patients were found to be treatment duration, higher number of new combined unique active lesion count, higher number of new T1 hypointense black holes, and higher age-related MS severity score. The outcome of this analysis improves our understanding of the mechanism of onset of disease activity in patients with MS by allowing their early identification in clinical settings and prompting preventive measures, therapeutic interventions, or more frequent patient monitoring.

摘要

多发性硬化症 (MS) 是最常见的中青年自身免疫性神经功能障碍疾病之一,全球有超过 230 万人受其影响。根据患者的病理生理学和当前治疗方法预测多发性硬化症患者的未来疾病活动对于确定未来的治疗方案至关重要。在这方面,我们使用机器学习来预测多发性硬化症患者的疾病活动状态,并确定最能预测该活动的协变量。该分析基于三个克拉屈滨片临床试验的 1935 名患者的汇总人群进行,这些试验的结果不同:复发缓解型多发性硬化症(来自 CLARITY 和 CLARITY-Extension 试验)和首次发生脱髓鞘事件的患者(来自 ORACLE-MS 试验)。我们应用梯度提升(来自 XgBoost 库)和 Shapley 加法解释(SHAP)方法来识别可预测患者疾病活动的协变量,这些协变量可在其临床观察前 3 个月和 6 个月预测,包括患者基线特征、纵向磁共振成像读数以及神经和实验室测量结果。发现最能预测疾病活动早期识别的协变量是治疗持续时间、新的联合独特活动病灶计数较多、新的 T1 低信号黑洞较多以及与年龄相关的多发性硬化症严重程度评分较高。这项分析的结果通过允许在临床环境中早期识别和提示预防措施、治疗干预或更频繁的患者监测,提高了我们对多发性硬化症患者疾病活动发作机制的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc82/9286719/f186d4dd50d0/PSP4-11-843-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验