Suppr超能文献

利用机器学习和基于MRI的生物标志物预测多发性硬化症的疾病进展和预后:综述

Predicting multiple sclerosis disease progression and outcomes with machine learning and MRI-based biomarkers: a review.

作者信息

Yousef Hibba, Malagurski Tortei Brigitta, Castiglione Filippo

机构信息

Technology Innovation Institute, Biotechnology Research Center, P.O.Box: 9639, Masdar City, Abu Dhabi, United Arab Emirates.

Institute for Applied Computing (IAC), National Research Council of Italy, Rome, Italy.

出版信息

J Neurol. 2024 Oct;271(10):6543-6572. doi: 10.1007/s00415-024-12651-3. Epub 2024 Sep 12.

Abstract

Multiple sclerosis (MS) is a demyelinating neurological disorder with a highly heterogeneous clinical presentation and course of progression. Disease-modifying therapies are the only available treatment, as there is no known cure for the disease. Careful selection of suitable therapies is necessary, as they can be accompanied by serious risks and adverse effects such as infection. Magnetic resonance imaging (MRI) plays a central role in the diagnosis and management of MS, though MRI lesions have displayed only moderate associations with MS clinical outcomes, known as the clinico-radiological paradox. With the advent of machine learning (ML) in healthcare, the predictive power of MRI can be improved by leveraging both traditional and advanced ML algorithms capable of analyzing increasingly complex patterns within neuroimaging data. The purpose of this review was to examine the application of MRI-based ML for prediction of MS disease progression. Studies were divided into five main categories: predicting the conversion of clinically isolated syndrome to MS, cognitive outcome, EDSS-related disability, motor disability and disease activity. The performance of ML models is discussed along with highlighting the influential MRI-derived biomarkers. Overall, MRI-based ML presents a promising avenue for MS prognosis. However, integration of imaging biomarkers with other multimodal patient data shows great potential for advancing personalized healthcare approaches in MS.

摘要

多发性硬化症(MS)是一种脱髓鞘性神经疾病,临床表现和病程进展高度异质性。由于尚无已知的治愈方法,疾病修正疗法是唯一可用的治疗方法。由于这些疗法可能伴有严重风险和不良反应,如感染,因此必须仔细选择合适的疗法。磁共振成像(MRI)在MS的诊断和管理中起着核心作用,尽管MRI病变与MS临床结果仅显示出中等程度的关联,即临床-放射学悖论。随着机器学习(ML)在医疗保健领域的出现,通过利用能够分析神经影像数据中日益复杂模式的传统和先进ML算法,可以提高MRI的预测能力。本综述的目的是研究基于MRI的ML在预测MS疾病进展中的应用。研究分为五大类:预测临床孤立综合征向MS的转化、认知结果、与扩展残疾状态量表(EDSS)相关的残疾、运动残疾和疾病活动。讨论了ML模型的性能,并突出了有影响力的MRI衍生生物标志物。总体而言,基于MRI的ML为MS预后提供了一条有前景的途径。然而,将影像生物标志物与其他多模态患者数据相结合,在推进MS个性化医疗方法方面显示出巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63b8/11447111/66435a5e3bc7/415_2024_12651_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验