Suppr超能文献

可解释的机器学习预测接受 tepotinib 治疗的患者的水肿不良事件。

Explainable machine learning prediction of edema adverse events in patients treated with tepotinib.

机构信息

Swiss Data Science Center (EPFL and ETH Zurich), Lausanne, Switzerland.

The healthcare business of Merck KGaA, Darmstadt, Germany.

出版信息

Clin Transl Sci. 2024 Sep;17(9):e70010. doi: 10.1111/cts.70010.

Abstract

Tepotinib is approved for the treatment of patients with non-small-cell lung cancer harboring MET exon 14 skipping alterations. While edema is the most prevalent adverse event (AE) and a known class effect of MET inhibitors including tepotinib, there is still limited understanding about the factors contributing to its occurrence. Herein, we apply machine learning (ML)-based approaches to predict the likelihood of occurrence of edema in patients undergoing tepotinib treatment, and to identify factors influencing its development over time. Data from 612 patients receiving tepotinib in five Phase I/II studies were modeled with two ML algorithms, Random Forest, and Gradient Boosting Trees, to predict edema AE incidence and severity. Probability calibration was applied to give a realistic estimation of the likelihood of edema AE. Best model was tested on follow-up data and on data from clinical studies unused while training. Results showed high performances across all the tested settings, with F1 scores up to 0.961 when retraining the model with the most relevant covariates. The use of ML explainability methods identified serum albumin as the most informative longitudinal covariate, and higher age as associated with higher probabilities of more severe edema. The developed methodological framework enables the use of ML algorithms for analyzing clinical safety data and exploiting longitudinal information through various covariate engineering approaches. Probability calibration ensures the accurate estimation of the likelihood of the AE occurrence, while explainability tools can identify factors contributing to model predictions, hence supporting population and individual patient-level interpretation.

摘要

特泊替尼获批用于治疗携 MET 外显子 14 跳跃突变的非小细胞肺癌患者。虽然水肿是最常见的不良反应(AE),也是包括特泊替尼在内的 MET 抑制剂的已知类效应,但对于导致其发生的因素仍知之甚少。在此,我们应用基于机器学习(ML)的方法预测接受特泊替尼治疗的患者发生水肿的可能性,并确定随时间推移影响其发展的因素。对 5 项 I/II 期研究中 612 名接受特泊替尼治疗的患者的数据应用两种 ML 算法,随机森林和梯度提升树,来预测水肿 AE 的发生率和严重程度。概率校准用于对水肿 AE 的发生可能性进行真实估计。最佳模型在随访数据和训练时未使用的临床研究数据上进行了测试。结果表明,在所有测试的环境中都表现出了较高的性能,在使用最相关协变量重新训练模型时,F1 分数高达 0.961。ML 可解释性方法的使用确定血清白蛋白为最具信息量的纵向协变量,年龄较高与更严重水肿的发生概率更高相关。所开发的方法框架使 ML 算法能够用于分析临床安全性数据,并通过各种协变量工程方法利用纵向信息。概率校准确保对 AE 发生的可能性进行准确估计,而可解释性工具可以确定导致模型预测的因素,从而支持人群和个体患者水平的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e34/11368086/094dd777c392/CTS-17-e70010-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验