Suppr超能文献

串联陷阱离子淌度谱/质谱联用(TIMS/MS):一种用于研究异质样品的很有前途的分析方法。

Tandem-trapped ion mobility spectrometry/mass spectrometry (TIMS/MS): a promising analytical method for investigating heterogenous samples.

机构信息

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.

Bruker Daltonics Inc., Billerica, MA 01821, USA.

出版信息

Analyst. 2022 May 30;147(11):2317-2337. doi: 10.1039/d2an00335j.

Abstract

Ion mobility spectrometry/mass spectrometry (IMS/MS) is widely used to study various levels of protein structure. Here, we review the current state of affairs in -trapped ion mobility spectrometry/mass spectrometry (TIMS/MS). Two different TIMS/MS instruments are discussed in detail: the first TIMS/MS instrument, constructed from coaxially aligning two TIMS devices; and an orthogonal TIMS/MS configuration that comprises an ion trap for irradiation of ions with UV photons. We discuss the various workflows the two TIMS/MS setups offer and how these can be used to study primary, tertiary, and quaternary structures of protein systems. We also discuss, from a more fundamental perspective, the processes that lead to denaturation of protein systems in TIMS/MS and how to soften the measurement so that biologically meaningful structures can be characterised with TIMS/MS. We emphasize the concepts underlying TIMS/MS to underscore the opportunities tandem-ion mobility spectrometry methods offer for investigating heterogeneous samples.

摘要

离子淌度谱/质谱联用(IMS/MS)广泛用于研究各种水平的蛋白质结构。在这里,我们回顾了 - 内离子淌度谱/质谱联用(TIMS/MS)的现状。详细讨论了两种不同的 TIMS/MS 仪器:第一个 TIMS/MS 仪器由同轴对准的两个 TIMS 装置构成;以及一种正交 TIMS/MS 配置,包括一个离子阱,用于用紫外光子辐照离子。我们讨论了这两种 TIMS/MS 装置提供的各种工作流程,以及如何利用这些流程研究蛋白质系统的一级、三级和四级结构。我们还从更基础的角度讨论了导致蛋白质系统在 TIMS/MS 中变性的过程,以及如何软化测量,以便使用 TIMS/MS 来表征具有生物学意义的结构。我们强调了 TIMS/MS 的基本概念,以强调串联离子淌度谱方法在研究异质样品方面提供的机会。

相似文献

3
Differentiation of Isomeric, Nonseparable Carbohydrates Using Tandem-Trapped Ion Mobility Spectrometry-Mass Spectrometry.
Anal Chem. 2023 Jan 17;95(2):747-757. doi: 10.1021/acs.analchem.2c02844. Epub 2022 Dec 22.
4
Tandem-trapped ion mobility spectrometry/mass spectrometry coupled with ultraviolet photodissociation.
Rapid Commun Mass Spectrom. 2021 Nov 30;35(22):e9192. doi: 10.1002/rcm.9192.
5
On the Preservation of Non-covalent Peptide Assemblies in a Tandem-Trapped Ion Mobility Spectrometer-Mass Spectrometer (TIMS-TIMS-MS).
J Am Soc Mass Spectrom. 2019 Jul;30(7):1204-1212. doi: 10.1007/s13361-019-02200-y. Epub 2019 Apr 25.
7
Developments in tandem ion mobility mass spectrometry.
Biochem Soc Trans. 2020 Dec 18;48(6):2457-2466. doi: 10.1042/BST20190788.
9
Collision-Induced Unfolding of Native-like Protein Ions Within a Trapped Ion Mobility Spectrometry Device.
J Am Soc Mass Spectrom. 2022 Jan 5;33(1):83-89. doi: 10.1021/jasms.1c00273. Epub 2021 Dec 6.

引用本文的文献

2
Collision-Induced Unfolding of High-/ Native-like Protein Ions within a Trapped Ion Mobility Spectrometer.
J Am Soc Mass Spectrom. 2025 Sep 3;36(9):1988-1994. doi: 10.1021/jasms.5c00246. Epub 2025 Aug 21.
4
Applications and prospects of phosphoproteomics in renal disease research.
PeerJ. 2025 Mar 20;13:e18950. doi: 10.7717/peerj.18950. eCollection 2025.
5
Evaluation of a Commercial TIMS-Q-TOF Platform for Native Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Jul 3;35(7):1394-1402. doi: 10.1021/jasms.3c00320. Epub 2024 Jun 21.
6
Computational tools and algorithms for ion mobility spectrometry-mass spectrometry.
Proteomics. 2024 Jun;24(12-13):e2200436. doi: 10.1002/pmic.202200436. Epub 2024 Mar 4.
7
Elucidating Structures of Protein Complexes by Collision-Induced Dissociation at Elevated Gas Pressures.
J Am Soc Mass Spectrom. 2023 Oct 4;34(10):2247-2258. doi: 10.1021/jasms.3c00191. Epub 2023 Sep 20.

本文引用的文献

1
The Human Proteoform Project: Defining the human proteome.
Sci Adv. 2021 Nov 12;7(46):eabk0734. doi: 10.1126/sciadv.abk0734.
2
Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM.
J Am Chem Soc. 2021 Nov 10;143(44):18733-18743. doi: 10.1021/jacs.1c09370. Epub 2021 Nov 1.
3
Tandem-trapped ion mobility spectrometry/mass spectrometry coupled with ultraviolet photodissociation.
Rapid Commun Mass Spectrom. 2021 Nov 30;35(22):e9192. doi: 10.1002/rcm.9192.
4
Structural O-Glycoform Heterogeneity of the SARS-CoV-2 Spike Protein Receptor-Binding Domain Revealed by Top-Down Mass Spectrometry.
J Am Chem Soc. 2021 Aug 11;143(31):12014-12024. doi: 10.1021/jacs.1c02713. Epub 2021 Jul 30.
5
Fragmentation and Mobility Separation of Peptide and Protein Ions in a Trapped-Ion Mobility Device.
Anal Chem. 2021 Jul 27;93(29):9959-9964. doi: 10.1021/acs.analchem.1c01188. Epub 2021 Jul 14.
6
Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry.
Anal Chem. 2021 Jul 13;93(27):9575-9582. doi: 10.1021/acs.analchem.1c01735. Epub 2021 Jun 25.
7
Influence of protein ion charge state on 213 nm top-down UVPD.
Analyst. 2021 Jun 14;146(12):3977-3987. doi: 10.1039/d1an00571e.
8
Cyclic Ion Mobility-Collision Activation Experiments Elucidate Protein Behavior in the Gas Phase.
J Am Soc Mass Spectrom. 2021 Jun 2;32(6):1545-1552. doi: 10.1021/jasms.1c00018. Epub 2021 May 18.
9
Surface-Induced Dissociation of Protein Complexes Selected by Trapped Ion Mobility Spectrometry.
Anal Chem. 2021 Apr 6;93(13):5513-5520. doi: 10.1021/acs.analchem.0c05373. Epub 2021 Mar 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验