Suppr超能文献

评估动态行波轮廓以增强用于无损离子操控的行波结构中的分离和灵敏度。

Evaluating dynamic traveling wave profiles for the enhancement of separation and sensitivity in traveling wave structures for lossless ion manipulations.

机构信息

Department of Chemistry, Washington State University, Pullman, WA 99163, USA.

Department of Chemistry, Washington State University, Pullman, WA 99163, USA.

出版信息

J Chromatogr A. 2023 Sep 13;1706:464207. doi: 10.1016/j.chroma.2023.464207. Epub 2023 Jul 14.

Abstract

The amenability of traveling wave ion mobility spectrometry (TWIMS) to extended separation pathlengths has prompted a recent surge of interest concerning the technique. While promising, the optimization of ion transmission, particularly when analyzing increasingly disparate species, remains an obstacle in TWIMS. To address this issue, we evaluated a suite of dynamic TW profiles using an original TW structures for lossless ion manipulations (TW-SLIM) platform developed at Washington State University. Inspired by the range of gradient elution profiles used in traditional chromatography, three distinct square TW profiles were evaluated: a static approach which represents a traditional waveform, a dual approach which consists of two distinct TW profiles within a given separation event; and a ramp approach which varies TW speed and amplitude at a fixed rate during separation. The three waveform profiles were evaluated in terms of their impact on separation (quantified as resolution) and sensitivity (quantified using signal-to-noise ratio (SNR), and ion abundance). Concerning separation, the highest resolution (R) was observed when operating with the static waveform (R = 7.92); however, the ramp waveform performed comparably (R = 7.70) under similar conditions. Regarding SNR, optimum waveform profiles were species dependent. Bradykinin displayed the largest gains in SNR (36.6% increase) when ramping TW speed, while the gains were greatest (33.5% increase) for tetraoctylammonium when modulating TW amplitude with the static waveform. Lastly, significant (>10%) increases in the abundance of tetraoctylammonium ions were observed exclusively when utilizing a ramped waveform. The present set of experiments outline the results and challenges related to optimizing separations using alternative TW profiles and provides insight concerning TW-SLIM method development which may be tailored to enhance select analytical metrics.

摘要

行波离子迁移谱(TWIMS)对扩展分离路径长度的适应性促使人们对该技术产生了浓厚的兴趣。尽管有很大的前景,但离子传输的优化,尤其是在分析越来越不同的物种时,仍然是 TWIMS 中的一个障碍。为了解决这个问题,我们使用华盛顿州立大学开发的原始 TW 结构进行无损离子操作(TW-SLIM)平台评估了一系列动态 TW 轮廓。受传统色谱中梯度洗脱轮廓范围的启发,评估了三种不同的方形 TW 轮廓:一种是传统波形的静态方法,一种是由给定分离事件内的两个不同 TW 轮廓组成的双方法,另一种是在分离过程中以固定速率改变 TW 速度和幅度的斜坡方法。从分离的角度(用分辨率来衡量)和灵敏度(用信噪比(SNR)和离子丰度来衡量)评估了这三种波形轮廓。关于分离,当使用静态波形时,观察到最高分辨率(R)(R = 7.92);然而,在类似条件下,斜坡波形的性能相当(R = 7.70)。关于 SNR,最佳的波形轮廓是依赖于物种的。当调整 TW 速度时,缓激肽的 SNR 增益最大(增加 36.6%),而当使用静态波形调制 TW 幅度时,四辛基铵的增益最大(增加 33.5%)。最后,当仅使用斜坡波形时,观察到四辛基铵离子的丰度显著增加(增加超过 10%)。这组实验概述了使用替代 TW 轮廓优化分离的结果和挑战,并提供了有关 TW-SLIM 方法开发的见解,该方法可以根据需要进行调整,以增强选择的分析指标。

相似文献

2
Evaluation of Waveform Profiles for Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.
J Am Soc Mass Spectrom. 2021 Jan 6;32(1):225-236. doi: 10.1021/jasms.0c00282. Epub 2020 Oct 30.
3
Effect of Traveling Waveform Profiles on Collision Cross Section Measurements in Structures for Lossless Ion Manipulations.
J Am Soc Mass Spectrom. 2022 May 4;33(5):783-792. doi: 10.1021/jasms.1c00364. Epub 2022 Apr 18.
4
Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations.
Talanta. 2022 Jul 1;244:123446. doi: 10.1016/j.talanta.2022.123446. Epub 2022 Apr 4.
5
Traveling-Wave-Based Electrodynamic Switch for Concurrent Dual-Polarity Ion Manipulations in Structures for Lossless Ion Manipulations.
Anal Chem. 2019 Nov 19;91(22):14712-14718. doi: 10.1021/acs.analchem.9b03987. Epub 2019 Oct 30.
6
Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.
Anal Chem. 2015 Nov 17;87(22):11301-8. doi: 10.1021/acs.analchem.5b02481. Epub 2015 Oct 28.
10
Altering Conformational States of Dynamic Ion Populations using Traveling Wave Structures for Lossless Ion Manipulations.
Anal Chem. 2024 Apr 23;96(16):6450-6458. doi: 10.1021/acs.analchem.4c00692. Epub 2024 Apr 11.

引用本文的文献

2
3
Altering Conformational States of Dynamic Ion Populations using Traveling Wave Structures for Lossless Ion Manipulations.
Anal Chem. 2024 Apr 23;96(16):6450-6458. doi: 10.1021/acs.analchem.4c00692. Epub 2024 Apr 11.
4
Evaluating Ion Accumulation and Storage in Traveling Wave Based Structures for Lossless Ion Manipulations.
J Am Soc Mass Spectrom. 2023 Dec 6;34(12):2849-2856. doi: 10.1021/jasms.3c00348. Epub 2023 Nov 20.

本文引用的文献

1
General Method to Obtain Collision Cross-Section Values in Multipass High-Resolution Cyclic Ion Mobility Separations.
Anal Chem. 2023 May 23;95(20):8028-8035. doi: 10.1021/acs.analchem.3c00919. Epub 2023 May 10.
2
Development of a Structure for Lossless Ion Manipulations (SLIM) High Charge Capacity Array of Traps.
Anal Chem. 2023 Mar 7;95(9):4446-4453. doi: 10.1021/acs.analchem.2c05025. Epub 2023 Feb 23.
3
Evaluating the Utility of Temporal Compression in High-Resolution Traveling Wave-Based Cyclic Ion Mobility Separations.
ACS Meas Sci Au. 2022 Jun 7;2(4):361-369. doi: 10.1021/acsmeasuresciau.2c00016. eCollection 2022 Aug 17.
5
Effect of Traveling Waveform Profiles on Collision Cross Section Measurements in Structures for Lossless Ion Manipulations.
J Am Soc Mass Spectrom. 2022 May 4;33(5):783-792. doi: 10.1021/jasms.1c00364. Epub 2022 Apr 18.
6
Accelerating prototyping experiments for traveling wave structures for lossless ion manipulations.
Talanta. 2022 Jul 1;244:123446. doi: 10.1016/j.talanta.2022.123446. Epub 2022 Apr 4.
7
High-Throughput Multiplexed Infrared Spectroscopy of Ion Mobility-Separated Species Using Hadamard Transform.
Anal Chem. 2022 Feb 15;94(6):2912-2917. doi: 10.1021/acs.analchem.1c04843. Epub 2022 Feb 3.
9
High-defined quantitative snapshots of the ganglioside lipidome using high resolution ion mobility SLIM assisted shotgun lipidomics.
Anal Chim Acta. 2021 Feb 15;1146:77-87. doi: 10.1016/j.aca.2020.12.022. Epub 2020 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验