Suppr超能文献

基于贡献学习的对比多视图复合图卷积网络在自闭症谱系障碍分类中的应用。

Contrastive Multi-View Composite Graph Convolutional Networks Based on Contribution Learning for Autism Spectrum Disorder Classification.

出版信息

IEEE Trans Biomed Eng. 2023 Jun;70(6):1943-1954. doi: 10.1109/TBME.2022.3232104. Epub 2023 May 19.

Abstract

The resting-state functional magnetic resonance imaging (rs-fMRI) faithfully reflects the brain activities and thus provides a promising tool for autism spectrum disorder (ASD) classification. Up to now, graph convolutional networks (GCNs) have been successfully applied in rs-fMRI based ASD classification. However, most of these methods were developed based on functional connectivities (FCs) that only reflect low-level correlation between brain regions, without integrating both high-level discriminative knowledge and phenotypic information into classification. Besides, they suffered from the overfitting problem caused by insufficient training samples. To this end, we propose a novel contrastive multi-view composite GCN (CMV-CGCN) for ASD classification using both FCs and HOFCs. Specifically, a pair of graphs are constructed based on the FC and HOFC features of the subjects, respectively, and they share the phenotypic information in the graph edges. A novel contrastive multi-view learning method is proposed based on the consistent representation of both views. A contribution learning mechanism is further incorporated, encouraging the FC and HOFC features of different subjects to have various contribution in the contrastive multi-view learning. The proposed CMV-CGCN is evaluated on 613 subjects (including 286 ASD patients and 327 NCs) from the Autism Brain Imaging Data Exchange (ABIDE). We demonstrate the performance of the method for ASD classification, which yields an accuracy of 75.20% and an area under the curve (AUC) of 0.7338. Experimental results show that our proposed method outperforms state-of-the-art methods on the ABIDE database.

摘要

静息态功能磁共振成像(rs-fMRI)忠实地反映了大脑活动,因此为自闭症谱系障碍(ASD)分类提供了一种很有前途的工具。到目前为止,图卷积网络(GCN)已成功应用于基于 rs-fMRI 的 ASD 分类。然而,这些方法大多是基于仅反映脑区之间低水平相关性的功能连接(FCs)开发的,没有将高级别判别知识和表型信息整合到分类中。此外,它们还受到训练样本不足导致的过拟合问题的影响。为此,我们提出了一种新的对比多视图组合 GCN(CMV-CGCN),用于使用 FC 和 HOFC 对 ASD 进行分类。具体来说,基于受试者的 FC 和 HOFC 特征分别构建一对图,它们在图边缘共享表型信息。基于两种视图的一致表示,提出了一种新的对比多视图学习方法。进一步纳入了一种贡献学习机制,鼓励不同受试者的 FC 和 HOFC 特征在对比多视图学习中具有不同的贡献。在来自自闭症大脑成像数据交换(ABIDE)的 613 名受试者(包括 286 名 ASD 患者和 327 名 NC)上评估了所提出的 CMV-CGCN。我们证明了该方法在 ASD 分类中的性能,其准确率为 75.20%,曲线下面积(AUC)为 0.7338。实验结果表明,与 ABIDE 数据库中的现有方法相比,我们提出的方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验