Suppr超能文献

基于空间插值技术和深度学习模型的新型混合模型预测 MODIS 地表温度。

Prediction of MODIS land surface temperature using new hybrid models based on spatial interpolation techniques and deep learning models.

机构信息

Department of Computer Engineering, Engineering Faculty, Cukurova University, Saricam/Adana, Turkey.

Department of Architecture and Town Planning, Vocational School of Higher Education for Technical Sciences, Igdir University, Igdir, Turkey.

出版信息

Environ Sci Pollut Res Int. 2022 Sep;29(44):67115-67134. doi: 10.1007/s11356-022-20572-9. Epub 2022 May 6.

Abstract

Land surface temperature (LST) prediction is of great importance for climate change, ecology, environmental and industrial studies. These studies require accurate LST map predictions considering both spatial and temporal dynamics. In this study, multilayer perceptron (MLP), long short-term memory (LSTM) and an integrated machine learning model, namely Convolutional LSTM (ConvLSTM), were utilized for one step ahead LST prediction. Data were gathered from 1-day (MYD11A1) and 8-day composite (MYD11A2) Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, which have 1-km × 1-km spatial resolution. Considering the inability of MODIS sensors to provide LST data under cloudy conditions, Inverse DISTANCE WEIGHTING (IDW), natural neighbor (NN), and cubic spline (C) methods were used to overcome the missing pixel problem. The proposed methods were tested over the Northern part of Adana province, Turkey, and the performances of the models were quantitatively evaluated through performance measures, namely, Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The selected datasets range from 01 January 2017 to 01 November 2020 and from 01 January 2015 to 01 November 2020 for daily LST and 8-day composite LST, respectively. While 60% of the datasets were used as training set, the remaining 40% were used as validation (20%) and test (20%) sets. RMSE maps were generated to evaluate the pixelwise performance of the proposed method. On the other hand, the best average RMSE and MAE for the daily test set were obtained from the combination of ConvLSTM and NN (NN-ConvLSTM) as 3.62 °C and 2.85 °C, respectively, while they were acquired 3.57 °C and 2.69 C from the combination of MLP and NN (NN-MLP) for the 8-day composite LST test set. The results revealed that the proposed hybrid models could be used for one step ahead spatiotemporal prediction of LST data.

摘要

土地表面温度 (LST) 预测对于气候变化、生态学、环境和工业研究至关重要。这些研究需要考虑到时空动态的精确 LST 地图预测。在本研究中,多层感知机 (MLP)、长短期记忆 (LSTM) 和集成机器学习模型,即卷积长短期记忆 (ConvLSTM),用于一步超前 LST 预测。数据来自 1 天(MYD11A1)和 8 天合成(MYD11A2)中分辨率成像光谱仪 (MODIS) 传感器,空间分辨率为 1km×1km。考虑到 MODIS 传感器在云层条件下无法提供 LST 数据,因此使用逆距离加权 (IDW)、自然邻域 (NN) 和三次样条 (C) 方法来克服缺失像素问题。在所提出的方法在土耳其阿达纳省北部进行了测试,并通过性能指标(即均方根误差 (RMSE) 和平均绝对误差 (MAE))对模型的性能进行了定量评估。所选数据集范围为 2017 年 1 月 1 日至 2020 年 11 月 1 日和 2015 年 1 月 1 日至 2020 年 11 月 1 日,分别用于每日 LST 和 8 天合成 LST。60%的数据集用于训练集,其余 40%用于验证集(20%)和测试集(20%)。生成 RMSE 图以评估所提出方法的逐像素性能。另一方面,在每日测试集中,ConvLSTM 和 NN 的组合(NN-ConvLSTM)获得了最佳的平均 RMSE 和 MAE,分别为 3.62°C 和 2.85°C,而在 8 天合成 LST 测试集中,MLP 和 NN 的组合(NN-MLP)分别获得了 3.57°C 和 2.69°C。结果表明,所提出的混合模型可用于一步超前时空预测 LST 数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验