School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
Key Laboratory of Agricultural Remote Sensing and Information System, Hangzhou 310058, China.
Sensors (Basel). 2023 Jan 12;23(2):913. doi: 10.3390/s23020913.
Land surface temperatures (LST) are vital parameters in land surface-atmosphere interactions. Constrained by technology and atmospheric interferences, LST retrievals from various satellite sensors usually return missing data, thus negatively impacting analyses. Reconstructing missing data is important for acquiring gap-free datasets. However, the current reconstruction methods are limited for maintaining spatial details and high accuracies. We developed a new gap-free algorithm termed the spatial feature-considered random forest regression (SFRFR) model; it builds stable nonlinear relationships to connect the LST with related parameters, including terrain elements, land coverage types, spectral indexes, surface reflectance data, and the spatial feature of the LST, to reconstruct the missing LST data. The SFRFR model reconstructed gap-free LST data retrieved from the Landsat 8 satellite on 27 July 2017 in Wuhan. The results show that the SFRFR model exhibits the best performance according to the various evaluation metrics among the SFRFR, random forest regression and spline interpolation, with a coefficient of determination (R) reaching 0.96, root-mean-square error (RMSE) of 0.55, and mean absolute error (MAE) of 0.55. Then, we reconstructed gap-free LST data gathered in Wuhan from 2016 to 2021 to analyze urban thermal environment changes and found that 2020 presented the coolest temperatures. The SFRFR model still displayed satisfactory results, with an average R of 0.91 and an MAE of 0.63. We further discuss and discover the factors affecting the visual performance of SFRFR and identify the research priority to circumvent these disadvantages. Overall, this study provides a simple, practical method for acquiring gap-free LST data to help us better understand the spatiotemporal LST variation process.
地表温度(LST)是陆面-大气相互作用中的重要参数。受技术和大气干扰的限制,各种卫星传感器的 LST 反演通常会返回缺失数据,从而对分析产生负面影响。重建缺失数据对于获取无间隙数据集非常重要。然而,当前的重建方法在保持空间细节和高精度方面存在局限性。我们开发了一种新的无间隙算法,称为空间特征考虑随机森林回归(SFRFR)模型;它建立稳定的非线性关系,将 LST 与相关参数(包括地形要素、土地覆盖类型、光谱指数、地表反射率数据以及 LST 的空间特征)连接起来,以重建缺失的 LST 数据。该 SFRFR 模型重建了 2017 年 7 月 27 日从 Landsat 8 卫星获取的武汉市无间隙 LST 数据。结果表明,根据 SFRFR、随机森林回归和样条插值的各种评估指标,SFRFR 模型的性能最佳,决定系数(R)达到 0.96,均方根误差(RMSE)为 0.55,平均绝对误差(MAE)为 0.55。然后,我们重建了 2016 年至 2021 年在武汉市获取的无间隙 LST 数据,以分析城市热环境变化,发现 2020 年的温度最低。SFRFR 模型仍显示出令人满意的结果,平均 R 为 0.91,MAE 为 0.63。我们进一步讨论和发现了影响 SFRFR 视觉性能的因素,并确定了研究重点,以规避这些缺点。总的来说,本研究提供了一种简单实用的获取无间隙 LST 数据的方法,有助于我们更好地理解时空 LST 变化过程。