Stegmaier Alexander, Upreti Lavi K, Thomale Ronny, Boettcher Igor
Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074 Würzburg, Germany.
Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
Phys Rev Lett. 2022 Apr 22;128(16):166402. doi: 10.1103/PhysRevLett.128.166402.
Motivated by recent realizations of hyperbolic lattices in superconducting waveguides and electric circuits, we compute the Hofstadter butterfly on regular hyperbolic tilings. Utilizing large hyperbolic lattices with periodic boundary conditions, we obtain the true bulk spectrum unaffected by boundary states. The butterfly spectrum with large extended gapped regions prevails, and its shape is universally determined by the fundamental tile, while the fractal structure is lost. We explain how these features originate from Landau levels in hyperbolic space and can be verified experimentally.
受超导波导和电路中双曲晶格近期实现的启发,我们计算了规则双曲镶嵌上的霍夫施塔特蝴蝶。利用具有周期性边界条件的大型双曲晶格,我们获得了不受边界态影响的真实体谱。具有大的扩展能隙区域的蝴蝶谱占主导,其形状由基本瓷砖普遍决定,而分形结构消失。我们解释了这些特征如何源于双曲空间中的朗道能级,并可以通过实验验证。