Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
Theoretical Physics Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
Nat Commun. 2023 Feb 4;14(1):622. doi: 10.1038/s41467-023-36359-6.
Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element. The experiment is based on hyperbolic band theory that we confirm here in an unprecedented numerical survey of finite hyperbolic lattices. We implement hyperbolic graphene as an example of topologically nontrivial hyperbolic matter. Our work sets the stage to realize more complex forms of hyperbolic matter to challenge our established theories of physics in curved space, while the tunable complex-phase element developed here can be a key ingredient for future experimental simulation of various Hamiltonians with topological ground states.
弯曲空间在现代物理学的许多领域中都起着基本的作用,从宇宙学的长度尺度到与量子信息和量子引力有关的亚原子结构。在桌面实验中,可以使用双曲晶格来模拟负弯曲空间。在这里,我们通过依赖复相位电路元件的拓扑电路网络,引入并实验实现了双曲物质作为拓扑态的范例。该实验基于我们在这里前所未有的对有限双曲晶格的数值调查中确认的双曲能带理论。我们实现了双曲石墨烯作为拓扑非平凡双曲物质的例子。我们的工作为实现更复杂形式的双曲物质奠定了基础,以挑战我们在弯曲空间中的既定物理理论,而这里开发的可调谐复相位元件可以成为未来具有拓扑基态的各种哈密顿量的实验模拟的关键组成部分。