Suppr超能文献

无限双曲晶格高维表示的能带理论与边界模式

Band Theory and Boundary Modes of High-Dimensional Representations of Infinite Hyperbolic Lattices.

作者信息

Cheng Nan, Serafin Francesco, McInerney James, Rocklin Zeb, Sun Kai, Mao Xiaoming

机构信息

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA.

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Phys Rev Lett. 2022 Aug 19;129(8):088002. doi: 10.1103/PhysRevLett.129.088002.

Abstract

Periodic lattices in hyperbolic space are characterized by symmetries beyond Euclidean crystallographic groups, offering a new platform for classical and quantum waves, demonstrating great potential for a new class of topological metamaterials. One important feature of hyperbolic lattices is that their translation group is nonabelian, permitting high-dimensional irreducible representations (irreps), in contrast to abelian translation groups in Euclidean lattices. Here we introduce a general framework to construct wave eigenstates of high-dimensional irreps of infinite hyperbolic lattices, thereby generalizing Bloch's theorem, and discuss its implications on unusual mode counting and degeneracy, as well as bulk-edge correspondence in hyperbolic lattices. We apply this method to a mechanical hyperbolic lattice, and characterize its band structure and zero modes of high-dimensional irreps.

摘要

双曲空间中的周期晶格具有超越欧几里得晶体学群的对称性,为经典波和量子波提供了一个新平台,展现出一类新型拓扑超材料的巨大潜力。双曲晶格的一个重要特征是其平移群是非阿贝尔群,这使得它能够有高维不可约表示(不可约表示),这与欧几里得晶格中的阿贝尔平移群形成对比。在这里,我们引入一个通用框架来构建无限双曲晶格高维不可约表示的波本征态,从而推广布洛赫定理,并讨论其对非同寻常的模式计数和简并性的影响,以及双曲晶格中的体边对应关系。我们将此方法应用于一个机械双曲晶格,并表征其能带结构和高维不可约表示的零模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验