Suppr超能文献

具有传感、储能和电热加热功能的多功能纺织电子产品

Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities.

作者信息

Wang Bo, Peng Jun, Yang Kun, Cheng Haonan, Yin Yunjie, Wang Chaoxia

机构信息

College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.

Lash Miller Chemical Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

出版信息

ACS Appl Mater Interfaces. 2022 May 18;14(19):22497-22509. doi: 10.1021/acsami.2c06701. Epub 2022 May 6.

Abstract

The development of wearable devices has stimulated significant engineering and technologies of textile electronics (TEs). Improving sensing, energy-storing, and electro-heating capabilities of TEs is still challenging but crucial for their practical applications. Herein, a drip-coating method that constructs a dense β-FeOOH scaffold on a nylon strip for enhancing polypyrrole loading is proposed, which facilitates the fabrication of highly conductive and hydrophobic PFCNS (polypyrrole/β-FeOOH/nylon strip). The space provided by the β-FeOOH scaffold increases the mass of polypyrrole on fibers from 1.1 (polypyrrole/nylon strip) to 3.0 mg cm (polypyrrole/β-FeOOH/nylon strip), which decreases the resistance from 104.96 to 34.29 Ω cm. The PFCNS exhibits a linear elastic modulus of 0.758 MPa within 150% strain, performs a unique resistance variation mechanism, and enables great sensing capability with rapid response time (140 ms), long durability (10,000 stretching-recovering), and effective movement monitoring (e.g., breathing, back bending, jumping). The sensing signals for knee bending have been analyzed in detail by combining with both stretching and pressing response mechanisms. The PFCNS electrode attains a diffusion-controlled capacitance of 574 mF cm and discharging-capacitance of 916 mF cm. Furthermore, an interdigitally parallel connection is proposed, which assists the PFCNS heater in achieving high temperature (84 °C) at a low voltage (4 V). This work provides a simple route for nylon-based TEs and promises satisfactory application in wearable sensors, power sources, and heaters.

摘要

可穿戴设备的发展推动了纺织电子学(TEs)的重大工程和技术进步。提高TEs的传感、储能和电热能力仍然具有挑战性,但对其实际应用至关重要。在此,提出了一种滴涂法,该方法在尼龙条上构建致密的β-FeOOH支架以增强聚吡咯负载,这有助于制备高导电性和疏水性的PFCNS(聚吡咯/β-FeOOH/尼龙条)。β-FeOOH支架提供的空间使纤维上聚吡咯的质量从1.1(聚吡咯/尼龙条)增加到3.0 mg/cm(聚吡咯/β-FeOOH/尼龙条),电阻从104.96 Ω·cm降至34.29 Ω·cm。PFCNS在150%应变范围内表现出0.758 MPa的线性弹性模量,具有独特的电阻变化机制,并具有快速响应时间(140 ms)、长耐久性(10000次拉伸-恢复)和有效的运动监测能力(如呼吸、背部弯曲、跳跃)。结合拉伸和按压响应机制,详细分析了膝盖弯曲的传感信号。PFCNS电极的扩散控制电容为574 mF/cm,放电电容为916 mF/cm。此外,还提出了一种叉指式并联连接方式,这有助于PFCNS加热器在低电压(4 V)下达到高温(84°C)。这项工作为基于尼龙的TEs提供了一条简单的途径,并有望在可穿戴传感器、电源和加热器中得到令人满意的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验